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In these lectures, I will describe some basic principles of QCD 
applicable to the study of hard scattering processes at hadron 
colliders.

The outline of the course is as follows:

    1.  Basic principles; parton distribution functions; 
                Altarelli-Parisi equations

    2.   Parton model for hadron-hadron collisions; 
                 jets, jet observables, and jet shapes

    3.   Multiparton QCD amplitudes



QCD is an SU(3) Yang-Mills gauge theory, coupled to       Dirac 
fermions (quarks) in the 3 representation of SU(3).

This theory has two important properties:

Quark confinement:  The finite-energy bound states of the theory 
are SU(3) singlet states:                         .

Asymptotic freedom:   The coupling constant of the theory 
becomes weak as the momentum tranferred a reaction becomes 
large.
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basic formulae of asymptotic freedom:
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dg

d log Q
= β(g)

β(g) = −b0
g3

(4π)2
− b1

g5

(4π)4
− · · ·

g2

4π
= αs(Q) =

4π

b0 log(Q2/Λ2)
− 4πb1 log log(Q2/Λ2)

b3
0 log2(Q2/Λ2)

+ · · ·

b0 = 11− 2
3
nf b1 = 102− 38

3
nf



Bethke



PDG 2008
αs(MS)(mZ) = 0.1176± 0.002



Begin our discussion with the the simplest QCD 
process: 

I will ignore the quark masses.  Then this process is 
very easily analyzed in terms of scattering amplitudes 
between states of definite helicity.

First consider with the related pure QED process

 

e+e− → qq

e+e− → µ+µ−



The amplitudes for                           between states of definite 
helicity are very simple:

that is,
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These formulae lead to the regularities:

with                              .  The second formula sets the 
size of cross sections for all QED and electroweak 
processes.
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For                         ,  we multiply by the quark charges and 
sum over colors in the final state.  Then,

σ(e+e− → qq) =
4πα3
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It is more complex to describe processes with proton initial 
states.  Here we must treat the proton wavefunction non-
perturbatively.

It is too hard a problem to solve for the structure of the proton.  
We need an experimental setting in which we can measure it.  

This is provided by the process deep inelastic electron scattering 
from protons, measured in the famous SLAC-MIT experiment.
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the SLAC-MIT deep inelastic scattering experiment
1967
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6◦ , 16 GeV

10◦ , 17.7 GeV
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There is some wonderful kinematics, due to Feynman, that 
makes this process very effective for measuring the proton 
structure.  

Work in the ep CM frame.  The initial proton is coming in at high 
momentum.  Because of asymptotic freedom, a quark in the 
proton cannot be at high pT with respect to the proton, except 
through perturbative QCD corrections. So write (ignoring all 
masses)

The mass of the final quark is

But this is small!  so we can solve for

Then      is precisely determined by the final electron momentum 
vector.
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We can now represent the proton structure by giving the 
probability that we find a quark at a given value of    .

            is called the parton distribution function.

We can fold this distribution together with the electron-quark 
scattering process.  This requires a QED matrix element, but it is 
just the cross of the simple one discussed previously.

For electron momentum k, define
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Then it is straightforward to derive the formula

This formula exhibits Bjorken scaling:            is only a function 
of x and is independent of      .

           is a combination of contributions from the various quark 
flavors. We can disentangle this by looking also at cross sections 
from neutrino scattering, and from other probes that I will 
discuss tomorrow.
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The extra jets come from perturbative QCD processes.

Here is the leading-order formula for the rate of                     

where                            and similarly for      .

This makes sense as long as              are not near 1.  The 
complete formula is non-integrable.

e+e− → qqg

xq = 2Eq/ECM

xq, xq

xq

dσ(e+e− → qqg)
dxqdxq

= σ(e+e− → qq) · 2αs

3π

x2
q + x2

q

(1− xq)(1− xq)



The divergence comes from the fact that the virtual quark goes 
close to the mass shell as the gluon is emitted in the collinear 
direction:

In the collinear limit, the gluon emission probability is

where z is the fraction of the quark’s momentum transferred to 
the gluon.   As              or                  , the final state becomes 
difficult to distinguish from the final state without radiation.
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In fact, the quark can radiate many gluons, each one closer to 
collinear, or at lower     , than the one before.  The entire 
process is described by an evolution equation, called the 
Gribov-Lipatov equation.  If                is the probability of 
finding a radiated gluon at the momentum fraction z of the 
initial quark after the quark radiates gluons with  

A similar equation describes the evolution of                , the 
probability of finding the final quark at a fraction z of the 
energy of the initial quark.    
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The general form of the evolution equation is 

where i,j index quark and gluon species. The kernels are called 
splitting functions.  So far, we have 
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What is the “+” in the last line?

The quark to quark splitting function has a non-integrable 
singularity as           , associated with soft gluon radiation.  
However, at the same time that we add quarks at          , we 
should subtract quarks at           that have radiated.   What we 
really want for the quark to quark splitting function, then, is a 
structure

whose total integral is zero.

To implement this, define the + distribution by 

Using this definition, you can check that the splitting function 
on the previous slide satisfies 
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To describe the evolution of jets in perturbative QCD, we must 
consider the the additional radiation processes of gluon splitting:

Considering gluon radiation and gluon splitting, we obtain a 
an evolution equation with the additional kernels

This is the Altarelli-Parisi equation. 
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Quark and gluon radiation also applies to the initial-state 
quarks or gluons coming into a hard scattering process,

for example, deep inelastic scattering.  This implies that the 
parton distribution functions also evolve according to the 
Altarelli-Parisi equations.   The higher the Q to which we probe, 
the more quarks, antiquarks, and gluons we find in the proton 
structure.









filled circles - NuTeV
open squares - CCFR
crosses - CDHSW



deep-inelastic 
neutrino 
scattering



Here are the parton distribution functions generated by a recent 
fit to deep inelastic scattering data:



We are now set up to discuss hadron-hadron collisions. That is 
the subject of tomorrow’s lecture.


