

Jet Reconstruction at the LHC (Lecture 3)

Peter Loch University of Arizona Tucson, Arizona, USA (loch@physics.arizona.edu)

Arizona's First University.

Remember

Environment plays important role in jet reconstruction

- Underlying events add energy and small fluctuations to hard scatter
- Multiple interactions add fluctuations and little energy to hard scatter

×

Calorimeter signal choice important

- Different noise contributions from towers and clusters
- No hadronic energy scale for towers
 - & View does not follow shower structures!

No.

Two different jet calibration models

- Find jet first in uncalibrated (electromagnetic energy scale) signals, then calibrated in jet context to jet energy scale
- Calibrate calorimeter signals first, then find jet, then correct from hadronic to jet energy scale

Slide 2 of 32 Peter Loch September 17, 2008

Overview

Slide 3 of 32 Peter Loch September 17, 2008

Refined Jet Calibration With Other Detectors

Slide 4 of 32 Peter Loch September 17, 2008

Recall Jet Composition

- Jet with a large fraction of pT carried by charged particles is more hadronic
- Sensitivity of calibrated calorimeter signal to this fraction?

Slide 5 of 32 Peter Loch September 17, 2008

Lecture 3: Refined jet calibration with other detectors

-30

остовея 2-2008 2-

• $0.83 < f_{trk} < 1.04$ 200 -10 -10 10 20 30 200 -20 -10 10 -20 0 100 300 400 500 600 -30 0 Δp_{τ} (GeV) Δp_{T} (GeV) $p_{T,calo}$ (GeV) Slide 6 of 32 MEXICAN SCHOOL OF PARTICLES AND FIELDS **UAPhysics** Peter Loch THE UNIVERSITY OF ARIZONA September 17, 2008 College of Science

20 30

†_{trk}

Energy Flow Reconstruction (1)

- Combine reconstructed track with calorimeter cluster
 - Use track measurement if favoured by detector resolution

- Need to remove "charged response" from calorimeter if track is used
 - Basically remove cells around extrapolated track
- Works well in low occupancy environments
 - LEP, HERA, even Tevatron
- Not so obvious at LHC
 - Lots of tracks and calorimeter signal (shower) overlap

Slide 7 of 32 Peter Loch September 17, 2008

Energy Flow Reconstruction (2)

Studied in ATLAS

- Indicates resolution improvements for low pT jets (<80 GeV)</p>
- May be interesting for ttbar, for example

x2 solenoid field increases tracking precision reach!

Careful evaluation in busy environments needed

Removing wrong calorimeter signal decreases high energy resolution ("confusion term")

Slide 8 of 32 Peter Loch September 17, 2008

Lecture 3: Refined jet calibration with other detectors

Slide 9 of 32 Peter Loch September 17, 2008

Longitudinal Leakage (cont'd)

Note missing Et direction!

Indicates miscalibration of high energetic jet! A typical jet with shower leakage

Slide 10 of 32 Peter Loch September 17, 2008

A Word Of Caution

Inner detector acceptance in ATLAS is limited to within +/-2.5 in pseudorapidity

No tracks beyond this range, but still plenty of jets!

- Highest energies go even more forward
- Need to explore correlation between energy sharing in calorimeter samplings and leakage, too!

Slide 11 of 32 Peter Loch September 17, 2008

Tagging Jets From Pile-Up

89

Slide 12 of 32 Peter Loch September 17, 2008

Jets Not From Hard Scatter

Dangerous background for W+n jets crosssections etc.

- Lowest pT jet of final state can be faked or misinterpreted as coming from multiple interactions
- Usually taken care off by applying efficiency and purity estimates and correct cross-sections accordingly

Jet-by-jet handle

Classic indicator for multiple interactions is number of reconstructed vertices in event

Section 20 Content and 20 Content

- LHC RMS(z_vertex) ~ 8 cm
- If we can attach vertices to reconstructed jets, we can in principle identify jets not from hard scattering

Limited to pseudorapidities within 2.5!

CCTOBER 2-17

Slide 13 of 32 Peter Loch September 17, 2008

Lecture 3: Tagging jets from pile-up

First Task: TrackJets With Vertex

Find jets in tracks

- Hint to calorimeter inefficiencies
 - Cracks with calorimeter signal below threshold
- Tracks have vertices -> assign vertex to jet!
- No.

Need dedicated jet finder

- Typically clustering in two variables (η,φ)
- Use third variable z_{vertex} to assign correct vertex

Slide 14 of 32 Peter Loch September 17, 2008

Jet Areas (1)

Jet Areas (3)

Jet Area And Multiple Interactions

pT area density for each jet in an event if good indicator of multiple interation/underlying event activity

At least at particle level!
Jet area is challenging for

calorimeter jets

- Showers can increase lateral jet size
 - Most prominent in forward direction

Cluster better than towers?

- Not yet fully understood for calorimeter signals
 - Sounds promising, though!

(Salam/Cacciari)

Slide 19 of 32 Peter Loch September 17, 2008

Jet Areas For Various Algorithms

The Origin Of Jets: Masses And Shapes

Slide 21 of 32 Peter Loch September 17, 2008

Jet Mass

Gained interest at LHC

- Decay products of highly boosted heavy particles all reconstructed as one (narrow) jet
 - 🔏 E.g. top quark
- Indication of source from jet mass requires high resolution of spatial structures
 - Jet mass measurement notoriously difficult due to (hadronic) shower spread

We try to understand sensitivities

- Dependence on calorimeter signal choice
- Prominent constituent reconstruction

Other sub-structures...

Slide 22 of 32 Peter Loch September 17, 2008

JAPhysics

THE UNIVERSITY OF ARIZONA

College of Science

Jet Masses

Mass measurement challenging

- Particle jet level mass is reference Simulations only!
- Mass of calorimeter jet is affected by shower spreads
 - Enters: signal definition dependence, cluster shapes/overlap, noise,...
- Sensitivity to losses of soft particles
 - Magnetic field, dead material,...

relative mass difference

Slide 23 of 32 Peter Loch September 17, 2008

Lecture 3: Jet masses and shapes

Lecture 3: Jet masses and shapes

Jet Composition

We expected clusters to represent individual particles

- Cannot be perfect in busy jet environment!
 - Shower overlap in finite calorimeter granularity
- Some resolution power, though
 Much better than for tower jets!
- ~1.6:1 particles: clusters in central region of ATLAS
- ~1:1 in ATLAS endcap region
 - Best match of readout granularity, shower size and jet particle energy flow

Slide 26 of 32 Peter Loch September 17, 2008

Number Of Jet Constituents

Note that this not really a relevant variable!

But it can be understood as hint to support signal definition choices!

Slide 27 of 32 Peter Loch September 17, 2008

Lecture 3: Jet masses and shapes

Jet Energy Density

Slide 28 of 32 Peter Loch September 17, 2008

Slide 29 of 32 Peter Loch September 17, 2008

Conclusions

Jet reconstruction from detector signals is challenging

- Limited energy resolution
- Limited spatial resolution
- Change of jet shape by detector

A lot of the detector effects can be unfolded within limitations

- Highest level of factorization desirable to implement corrections and calibrations which can be independently tested
- Limitations depend on detector designs

There is no universal jet calibration

- Many jet finder strategies and configurations
- Each may need a corresponding calibration strategy
 - & Especially in a high precision measurement

We are looking into new things to get from jet reconstruction

- Origin from reconstructed mass and/or substructure
- Jet shapes for improved calibration and fragmentation tests

Slide *30* of *32* Peter Loch September 17, 2008

U,

What I Did Not Say

What are the precision requirements for jet reconstruction?

- ~<1% systematic error (top mass, mass spectrum at the end of a long decay chain in SUSY...)
 - A This is VERY challenging!
- It took running experiments O(10 years) of data taking to understand their detectors at this level
 - And often not for all final states!
- It is quick to go from 10% to 5% once we have data
- It is going to take some time to go from 5% down to 3%
 - It is going to take even more time to go from 3% down to 1%
- Why did I not show you the current estimates for jet reconstruction performance in ATLAS and CMS?
 - First of all, it's all based on simulations better to wait for a reasonable amount of good data for a better answer
 - I do not believe you will or want to remember these numbers anyway
 - If you need to know them, please contact me for references
 - Especially, I do not want to compare the ATLAS and CMS performance
 - It would lead to the wrong conclusions at this time!

Slide *31* of *32* Peter Loch September 17, 2008

I said in the beginning that the subject deserves a whole semester of lectures – I hope you now have at least a bit of an idea why!

Thank you very much!

Slide *32* of *32* Peter Loch September 17, 2008

