

Jet Reconstruction at the LHC (Lecture 2)

Peter Loch University of Arizona Tucson, Arizona, USA (loch@physics.arizona.edu)

Arizona's First University.

Remember?

Jets are bundles of particles with correlated kinematics

↓ ~25% photons, rest charged and neutral hadrons

Calorimeters are detectors of choice for jets

Generate signals from neutral and charged particles

Calorimeter response to particles depends on particle type

- More signal from electrons/photons than from pions of the same energy (non-compensation)
- Larger intrinsic fluctuations for hadrons
- Direct proportionality of electron signal to incoming energy
- Hadron response is energy dependent
 - Hadronic showers are less compact and larger
- Jet response is a convolution of the jet particle content with particle response
 - Typically higher than hadron response

Towers and clusters

Slide 2 of 38 Peter Loch September 17, 2008

How To Deal With Non-Compensation

Can we get the hadronic shower branch signals up to a signal corresponding to the electromagnetic signal?

- Lower fluctuations
- Direct proportionality of energy and signal
- One approach: cell signal weighting in highly granular calorimeter
 - Small signal densities in a calorimeter cell indicate hadronic deposit and should receive an additional correction (weight)
 - Pioneered by CDHS (1977) and developed by H1 (1992)
 - High signal densities indicate electromagnetic signals and don't need additional corrections

Bense, compact showers from electrons/photons

But how can we determine these weights?

- It's mostly a matter of context: are we trying to determine them for single particles (clusters) or jets
- ATLAS works with both approaches

Slide 3 of 38 Peter Loch September 17, 2008

Jet Calibration With Cell Weights

Statistical approach

Weights are determined by resolution minimalization fits with calorimeter jets

$$\left\langle E_{calo}^{jet} \right\rangle = \left\langle \sum_{cells} w(\rho_{cell}, \vec{X}_{cell}) \cdot E_{cells} \right\rangle = \left\langle E_{true}^{jet} \right\rangle$$

- Truth reference typically corresponding simulated particle jet
- Weights will include primary electromagnetic component of jet
 - Bo we really want this? They should only correct hadronic signals!
- Weights compensate all signal inefficiencies, not only e/h
 - Bead material corrections, leakage
 - & Low level of factorization!
- Weights need to be determined for all jet finders and jet finder configurations
 - A Need to find the jet first in uncalibrated signals
 - Solution 3 Then apply correct weight for given jet finder and configuration
 - & Huge task!

Slide 4 of 38 Peter Loch September 17, 2008

Hadronic Calibration

Why not calibrating calorimeter signals first?

- No jet context
- But need other context for cell signal weighting normalization
 - \rightarrow topological cell cluster
 - Energy blobs follow shower shape somewhat

Cluster based hadronic calibration

- Advantages to jet context: can use cluster shape to parametrzie cell weights
 - Measure compactness of signal cluster by cluster
 - Shape and size variables are easily reconstructed for each cluster
 E.g. 2nd geometrical moments

Allows factorization

- Deal with e/h at detector level (not jet level)
- Correct for local dead material at cluster level already
- But need to apply further jet context corrections for particles lost in magnetic field and dead material losses not correlated with cluster signals

Slide 5 of 38 Peter Loch September 17, 2008

variables

Signal environment used as additional indicator of hadronic character

Slide 7 of 38 Peter Loch September 17, 2008

Dead Material Energy Losses

Tracking device in front of a calorimeter

- And maybe even a cryostat wall
- Try to use the cluster signal to correct for the losses
 - In front
 - Inbetween
 - Central ATLAS!
 - Between
 - Endcap and forward cracks

Approach:

- Correlate cluster signal with nearby dead material energy loss in simulations
- Do this for each dead material region separately

Slide 8 of 50 Peter Loch September 17, 2008

Local Hadronic Calibration Summary

Attempt to calibrate hadronic calorimeter signals in smallest possible signal context

- Topological clustering implements noise suppression with least bias signal feature extraction
- No bias towards a certain physics analysis
- Good common signal base for all hadronic final state objects
 - lets, missing Et, taus

Factorization of cluster calibration

- Cluster classification largely avoids application of hadronic calibration to electromagnetic signal objects
 - Low energy regime challenging
- Signal weights for hadronic calibration are functions of cluster and cell parameters and variables
 - & Cluster energy and direction
 - & Cell signal density and location (sampling layer)
- Dead material and out of cluster corrections are independently applied

Slide 9 of 38 Peter Loch September 17, 2008

Overview

Lecture 1 (Saturday, October 4th, 2008, 12:30-13:30): Signals from particle jets

- Experimentalist view on jets
- Brief review of the basics of calorimetric energy measurement
- Jet response of a non-compensating calorimeter
- Calorimeter signal reconstruction: cells, towers, clusters

Lecture 2 (Sunday, October 5th, 2008, 12:30-13:30): Jet algorithms and reconstruction

- Physics environment for jet reconstruction at LHC
- Jet algorithms and reconstruction guidelines
- Jet calibration strategies
- Jet Reconstruction Performance

Lecture 3 (Sunday, October 5th, 2008, 17:00-18:00): Refinement of jet reconstruction at LHC

- Refined calibration using other detectors
- Tagging jets from pile-up
- The origin of jets: masses and shapes
- AOB

Slide 10 of 38 Peter Loch September 17, 2008

Jet Reconstruction Environment At LHC

Slide 11 of 38 Peter Loch September 17, 2008

Final State At LHC

Final state can make jet reconstruction more challenging

- Low activity" signatures like QCD di-jets (2->2 process + radiation)
 - Mostly gluons, more quarks at high pT
- Busy final states in SUSY
 - & Many leptons
 - Many (quark) jets
 - A Higher likelihood of signal overlap

1 A

Source of jet

- Hadronic W decays in ttbar production
 - & W color-disconnected to rest of collision
 - 🚨 Quark jets
- Prompt photon + jet(s)
 - & Mostly quark jet

Slide 14 of 38 Peter Loch September 17, 2008

Physics Environments @ LHC

Discovery physics at LHC

- Expect extreme busy final states
 - Lots of leptons, missing Et and jets O(10) in SUSY
 - Many x 10 jets in black hole production
 - Good spatial resolution power to find the jets
 - Good energy resolution for reliable missing Et calculation
- Need large rapidity coverage
 - Tag vector boson fusion production of Higgs and exotics
 - WW, WZ, ZZ with associated quark jets
 - A These "tag jets" often go forward
 - Jets are uncorrelated with each other, but balance the central system (Higgs)

Direction of tag jets in Higgs VBF production for $m_H = 100, 300, 600 \text{ GeV}$

this is a very old plot!

Slide 15 of 38 Peter Loch September 17, 2008

Slide *16* of *38* Peter Loch September 17, 2008

Jet Definition

Jet finding algorithm and its configuration

- Seeded or seedless cone and its parameters
 - & Cone size, seed threshold
 - & Recombination algorithm
- Recursive recombination algorithms
 - A Distance parameter
 - Recombination algorithm

No.

Signal or constituent definition

- Calorimeter towers or clusters
- Reconstructed tracks
- Generated particles
- Generated partons

"Snowmass"

$$E_T^{jet} = \sum E_{T,i}$$
$$\eta_{jet} = \frac{1}{E_T^{jet}} \sum E_{T,i} \cdot \eta_i$$

$$\varphi_{jet} = \frac{1}{E_T^{jet}} \sum E_{T,i} \cdot \varphi_i$$

4-momentum

 $\left(E_{jet}, \vec{p}_{jet}\right) = \left(\sum E_i, \sum \vec{p}_i\right)$

Slide 17 of 38 Peter Loch September 17, 2008

Theoretical Requirements

Infrared safety

- Additional soft particles should not affect jet reconstruction
- See extra slides from Gavin Salam
- **Collinear safety**
 - Split energies (one instead of two particles) should not change the jet
 - See extra slides from Gavin Salam

infrared sensitivity (soft gluon radiation merges jets)

collinear sensitivity (1) (sensitive to E_t ordering of seeds)

collinear sensitivity (2) (signal split into two towers below threshold)

Slide 18 of 38 Peter Loch September 17, 2008

(Animation courtesy of Gavin Salam)

y

(Animation courtesy of Gavin Salam)

У

(Animation courtesy of Gavin Salam)

(Animation courtesy of Gavin Salam)

(Animation courtesy of Gavin Salam)

Theoretical Requirements

- - **Infrared safety**
 - Additional soft particles should not լի affect jet reconstruction
 - See extra slides from Gavin Salam

Collinear safety

- Split energies (one instead of two particles) should not change the jet
- See extra slides from Gavin Salam

infrared sensitivity (soft gluon radiation merges jets)

collinear sensitivity (1) (sensitive to E_{+} ordering of seeds)

collinear sensitivity (2) (signal split into two towers below threshold)

Slide 19 of 38 Peter Loch September 17, 2008

Collinear splitting can modify the hard jets: ICPR algorithms are collinear unsafe \implies perturbative calculations give ∞ (Animation courtesy of Gavin Salam)

Experimental Requirements for Jet Finders

Detector technology independence

- Minimal contributions to spatial and energy resolution
- Insignificant effects of detector environment
 - A Noise
 - 🌲 Dead material
 - 🚨 Cracks
- Easy to calibrate
 - 🔏 Well...
- ź

Environment independence

- Stability with changing luminosity
- Identify all physically interesting jets from energetic partons in pertubative QCD (pQCD)
- High reconstruction efficiency
- ×

Implementation

- Fully specified
 - All selections and other configurations known
- Efficient use of computing sources

Slide 20 of 38 Peter Loch September 17, 2008

OCTOBER 2-

Popular Jet Algorithms in ATLAS

September 17, 2008

College of Science

Lecture 2: Finding jets

kT Clustering Visualization (Gavin Salam)

Slide 22 of 38 Peter Loch September 17, 2008

kt alg.: Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2)\Delta R_{ij}^2/R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2)\Delta R_{ij}^2/R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2)\Delta R_{ij}^2/R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7 ϕ assumed 0 for all towers

kt alg.: Find smallest of $d_{ii} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ii}^2 / R^2, \quad d_{iB} = k_{ti}^2$

> If d_{ii} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algo-

> > ϕ assumed 0 for all towers

kt alg .: Find smallest of $d_{ii} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ii}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ii} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

> If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

> > ϕ assumed 0 for all towers

k_t alg.: Find smallest of $min(l_{2}^{2}, l_{2}^{2}) \land P_{2}^{2}/P_{2}^{2} \rightarrow l_{2}$

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ii} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ii}^2 / R^2, \quad d_{iB} = k_{ti}^2$

> If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

> > ϕ assumed 0 for all towers

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet

Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

> If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

> > ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7 ϕ assumed 0 for all towers

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algo-

rithm, R = 0.7

 ϕ assumed 0 for all towers

k_t **alg.:** Find smallest of

 $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2, \quad d_{iB} = k_{ti}^2$

If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2)\Delta R_{ij}^2/R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7

 ϕ assumed 0 for all towers

k_t alg.: Find smallest of $d_{ij} = \min(k_{ti}^2, k_{tj}^2)\Delta R_{ij}^2/R^2, \quad d_{iB} = k_{ti}^2$ If d_{ij} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7 ϕ assumed 0 for all towers

kt alg.: Find smallest of $d_{ii} = \min(k_{ti}^2, k_{ti}^2) \Delta R_{ii}^2 / R^2, \quad d_{iB} = k_{ti}^2$ If d_{ii} recombine; if d_{iB} , *i* is a jet Example clustering with k_t algorithm, R = 0.7 ϕ assumed 0 for all towers

Slide 23 of 38 Peter Loch September 17, 2008

 E^{calo}_{dep}

 E_{mag}^{loss}

 E_{out}^{loss}

 E_{env}^{gain}

OCTOBER 2-

WEXICAN SCHOOL OF

Jet Response

Jets are bundles of particles

- ~25% initial photons
- Hadronic particles include mostly pions, kaons, protons and their anti-particles
 - A Different response!

Jet response in noncompensating calorimeters

- Jet signal depends on fragmentation/particle content
 - Significant jet-to-jet response variations due to more or less photons

 $E_{true}^{jet} = E_{dep}^{calo} + E_{mag}^{loss} + E_{low}^{loss} + E_{leak}^{loss} + E_{out}^{loss} - E_{UE\otimes PU}^{gain} - E_{env}^{gain}$

energy deposited in the calorimeter within signal definition

- charged particle energy lost in solenoid field
- E_{low}^{loss} particle energy lost in dead material

only source of signal!

- E_{leak}^{loss} energy lost due to longitudinal leakage
 - energy lost due to jet algorithm/calorimeter signal definition
- $E_{UE\otimes PU}^{gain}$ energy added by underlying event and/or pile-up

energy added by response from other nearby particles/jets

Slide 24 of 38 Peter Loch September 17, 2008

Slide 25 of 38 Peter Loch September 17, 2008

Jet Calibration Strategies Overview

- Two models:
 - Model I: Calibration in jet context
 - First find jet, then calibrate, then correct if needed
 - Model II: Calibration in cluster context
 - Calibrate calorimeter signals, then find jet, then correct (likely needed)
 - Local hadronic calibration plugs in here!

Best calibration likely a combination of both models

Need to keep track of systematics!

Slide *26* of *38* Peter Loch September 17, 2008

Cell Calibration Functions From Jets Sample of fully simulated QCD di-jet events from pT>17 GeV/c to ~4000 TeV/c Match reconstructed calorimeter jet with close-by particle jet Both jets reconstructed with Seeded Cone R=0.7 Match only successful if only one jet close by Calorimeter jets are based on tower signals in a grid of $\Delta\eta x \Delta\eta$ $= 0.1 \times 0.1$ **Determine cell signal weights (H1-style)** De-compose matched calorimeter jet into individual cell U signals Determine cell signal weights in resolution optimization fit using truth particle jet energy as normalization Weights are function of cell location and cell signal density Dense signals – em, less dense signals hadronic ų, Re-calculate jet four-momentum using cell weights Jet energy and direction change **Determine additional correction functions** Different jet size, cluster jets, different jet algorithm (kT) ų

Vicio MEXICAN SCHOOL OF PARTICLES AND FIELDS UNVERTOR SANDARD FIELDS UNVERTOR SANDARD FIELDS UNVERTOR SANDARD FIELDS

Slide 28 of 38 Peter Loch September 17, 2008

"H1" Style Cell Signal Weighting in ATLAS Fit constraint for weights:

$$\frac{\partial}{\partial w} \sum_{j=1}^{N_{evts}} \left(\left(\sum_{i=1}^{N_{cells}} w(\rho_i, \vec{X}_i) E_i \right) - E_{truth}^{jet} \right)^2 = 0$$

Jet four-momentum calculation after fit

$$\left(E_{reco}^{jet}, \vec{p}_{reco}^{jet}\right) = \left(\sum_{i=1}^{N_{cells}} w(\rho_i, \vec{X}_i)(E_i, \vec{p}_i)\right) \times \underbrace{f(\eta_{jet}, p_t^{jet})}_{=1 \text{ for reference jets}}, \text{ with } E_i = \left|\vec{p}_i\right|$$

Slide 29 of 38 Peter Loch September 17, 2008

Cluster Context Jet Calibration

Slide *30* of *38* Peter Loch September 17, 2008

"Data Only" Jet Calibration

	Task	JES	ΤοοΙ
1	PileUp Subtraction	$E_{bc}^{jet}(\eta_{jet},\varphi_{jet}) = E_0^{jet}(\eta_{jet},\varphi_{jet})$ $-\overline{\rho}_0^{mb}(N_{vtx},\eta_{jet},\varphi_{jet}) \cdot A_{\eta\varphi}^{jet}$	minbias events (determine E/Et density in pile-up as function of # vertices, next slide)
2	Relative response corrections (η,φ)	$E_{rel}^{jet} = \overline{f}(\eta_{jet}, \varphi_{jet}) \cdot E_{bc}^{jet}(\eta_{jet}, \varphi_{jet})$	di-jet pT balance (equalize jet response of calorimeter system with respect to central region in slices of φ , next slide)
3	Absolute energy scale corrections	$E_{rec}^{jet} = \overline{C}(p_{t,rel}^{jet},) \otimes E_{rel}^{jet}$	photon/jet pT balance in direct photon production (correct JES from pT balance with photon, as function of jet pT etc.)
00	TOBER 2-17	Peter Loch September 17, 2008	UAPhysics THE UNIVERSITY OF ARIZONA. College of Science

Slide *32* of *38* Peter Loch September 17, 2008

Jet Reconstruction

80

Slide *33* of *38* Peter Loch September 17, 2008

Deviations Signal Linearity

Estimated effect of a distorted detector

Effect of detector distortion depends on jet size, calo signal choice, and kinematic domain:

~ 2% for cone jets, up to ~4% for central (narrow) kT jets!

Truth jet transverse momentum (GeV/c)

Slide *36* of *38* Peter Loch September 17, 2008

Lecture 2: Jet reconstruction

Effect of calorimeter signal choice on jet energy resolution

Cluster jets have better resolution at low energies even for nonoptimal cell weights! ->noise?

$$\psi_{\sigma} = \begin{cases} \sqrt{\Delta\sigma_{rel}} & \Delta\sigma_{rel} > 0 \\ -\sqrt{-\Delta\sigma_{rel}} & \Delta\sigma_{rel} < 0 \end{cases}, \Delta\sigma_{rel} = \left(\frac{\sigma(E_{cluster})}{E_{cluster}}\right)^2 - \left(\frac{\sigma(E_{tower})}{E_{tower}}\right)^2 \end{cases}$$

Slide *37* of *38* Peter Loch September 17, 2008

Lecture 2: Jet reconstruction

Energy Resolution Differences

