An Introduction to High Energy Nuclear Collisions

QCD under extreme conditions

Jamal Jalilian-Marian Baruch College, City University of New York

many thanks to the organizers and colleagues whose slides I have "borrowed"

Fundamental particles and their interactions

QUARKS S=1/2		LEPTONS S=1/2		GAUGE BOSONS S=1	
Q = -2/3	Q = -1/3	Q = -1	Q = 0	quanta	
u u u m=(1-4) 10 ⁻³	d d d m=(5-8) 10 ⁻³	e m=5.11 10 ⁻⁴	v _e m<3 10 ⁻⁹	g₁ g ₈ m< a few 10 ^{−3}	
c c c m=1.0-1.4	s s s m=0.08-0.15	μ m=0.10566	ν _µ m<1.9 10 ⁻⁴	γ m<2 10 ⁻²⁵	
t t t m=174.3±5.1	b b b m=4.0-4.5	τ m=1.7770	ν _τ m<18.2 10 ⁻³	W [±] , Z ⁰ m _W =80.432 ±0.39, m _Z =91.1876 ±0.0021	

All masses in GeV units

	Interaction	exchanged boson	relative strength	example
QCD→	Strong	Gluon (g)	1	
	Electromagnet.	Photon (γ)	$\frac{1}{137}$	• ڪيئر سري ا
QED	Weak	w+, w -, z º	10-14	\sim
	Gravitation	Graviton (G)?	10 ⁻⁴⁰	${}^{u}_{u} > {}^{G}_{e} < {}^{e}_{e}$

An Introduction to High Energy Nuclear Collisions

Lecture I: What is a nucleus?

Deeply Inelastic Scattering (DIS), Parton Model, QCD, Structure Functions

Lecture II: What does a nucleus look like at high energy? QCD at small x, Renormalization Group, Saturation, Color Glass Condensate

Lecture III: Particle production in H.E. nuclear collisions Classical fields, particle production, Instability, Thermalization?

★ A hot and dense soup (Quark-Gluon Plasma)

★ Can we recreate this in lab and study its properties ?

 \star Strong interactions in the extreme limit

★ Can we probe/learn about new aspects of strong interactions ?

History of the Universe

Few microseconds after the Big Bang the entire Universe was in a QGP state

WHY?

★ Ultra-high energy cosmic rays

 \bigstar What is their source?

 \star A window into new physics ?

★ How do they interact?

★ Can they shed light on extreme limit of strong interactions ?

time=-266µs

time=-266µs

Ultra-High Energy Cosmic Rays

Quantum ChromoDynamics (QCD)

the theory of strong interactions: hadrons, nuclei

Quantum ChromoDynamics (QCD)

the theory of strong interactions: hadrons, nuclei

Quantum ChromoDynamics (QCD)

the theory of strong interactions: hadrons, nuclei

Gell-Mann and Ne'eman

Yang and Mills

Deeply Inelastic Scattering (DIS) probing hadron structure

 $x = \frac{\mathcal{Q}}{2pq}$

$$Q^{2} = -q^{2} = -(k_{\mu} - k'_{\mu})^{2}$$
$$Q^{2} = 4E_{e}E'_{e}\sin^{2}\left(\frac{\theta'_{e}}{2}\right)$$
$$y = \frac{pq}{pk} = 1 - \frac{E'_{e}}{E_{e}}\cos^{2}\left(\frac{\theta'_{e}}{2}\right)$$

SV

Measure of resolution power

Measure of inelasticity

Measure of momentum fraction of struck quark

DIS

$$\frac{d\sigma}{dxdQ^2} \propto L_{\mu\nu}W^{\mu\nu}$$

Hadronic tensor: $W^{\mu\nu} = 2 \text{ Disc. } T^{\mu\nu}(q^2, P \cdot q) = \frac{1}{2\pi} \text{ Im. } \int d^4x \, e^{iq \cdot x} \langle P | T(J^{\mu}(x)J^{\nu}(0)) | P \rangle$ $J^{\mu}(x) = \bar{\psi}\gamma^{\mu}\psi$

hadronic tensor can be written in terms of two structure functions, F2, FL

$$\frac{d^2 \sigma^{eh \to eX}}{dx dQ^2} = \frac{4\pi \alpha_{em}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]$$

A Deep Inelastic electron-proton Scattering event

ZEUS at DESY

Bj-scaling: apparent scale invariance of structure functions

Parton constituents of hadron are "quasi-free" on time scale 1/q

 x_{Bi} = Fraction of hadron momentum carried by a parton

$$F_2 \sim e^2 [xq(x) + x\bar{q}(x)]$$

Asymptotic Freedom

Gross, Wilczek, Politzer

Asymptotic Freedom

Gross, Wilczek, Politzer

1

$$\mathcal{L}_{\text{QCD}} = \bar{\psi}_i \left(i\gamma^\mu (D_\mu)_{ij} - m \,\delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$
$$= \bar{\psi}_i (i\gamma^\mu \partial_\mu - m) \psi_i - g G^a_\mu \bar{\psi}_i \gamma^\mu T^a_{ij} \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

 $G^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu - g f^{abc} G^b_\mu G^c_\nu$

The Bjorken limit

$$Q^2 \to \infty; s \to \infty; x_{\rm Bj} \approx \frac{Q^2}{s} = \text{fixed}$$

Operator Product Expansion (OPE) Factorization theorems machinery of precision physics in QCD

Structure of higher order contributions in pQCD

Coefficient functions C - computed to NNLO for many processes
 Splitting functions P - computed to 3-loops

Proton structure functions

"x-QCD"- small x evolution

$$\int_{0}^{1} \frac{dx}{x} (xq(x) - x\bar{q}(x)) = 3 \longrightarrow \# \text{ of valence quarks}$$
$$\int_{0}^{1} \frac{dx}{x} (xq(x) + x\bar{q}(x)) \to \infty \longrightarrow \# \text{ of quarks}$$

DIS: resolution scale

As Q increases, the photon sees more and more of the inner structure of the nucleus A

- If the set higher Q, more constituents with smaller values of the Feynman x
- A rapid increase of $G(x, Q^2)$ at small x is measured

Structure functions: DGLAP

One gluon emission gives the logarithmic Q² dependence

$$\frac{\alpha_s \int^{Q^2} \frac{dk_{\perp}^2}{k_{\perp}^2} \sim \alpha_s \ln Q^2}{\Rightarrow} q(x, Q^2) \sim \frac{\alpha_s}{2\pi} \left(P(x) \ln Q^2 + \cdots \right)$$

Change of the resolution scale Q2

ightarrow evolution equation for the parton distribution functions

DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi)

$$Q^2 \frac{\partial}{\partial Q^2} \begin{pmatrix} q_i(x, Q^2) \\ g(x, Q^2) \end{pmatrix} = \frac{\alpha_s}{2\pi} \sum_{q_j, \bar{q}_j} \int_x^1 \frac{dz}{z} \begin{pmatrix} P_{q_i q_j}(\frac{x}{z}) & P_{q_i g}(\frac{x}{z}) \\ P_{g q_j}(\frac{x}{z}) & P_{g g}(\frac{x}{z}) \end{pmatrix} \begin{pmatrix} q_j(z, Q^2) \\ g(z, Q^2) \end{pmatrix}$$

"Splitting function" $P_{ij}(x)$: a probability of finding a parton of type "*i*" in a parton of type "*j*". The equation for the change of "transverse resolution"

DGLAP at small x

Splitting functions at leading order $O(\alpha_{\rm S}^{0})$ $(x \neq 1)$

At small x, only P_{gq} and P_{gg} are relevant.

→ Gluon dominant at small x!

The double log approximation (DLA) of DGLAP is easily solved.

-- increase of gluon distribution at small x

Structure functions grow rapidly at small x

What have we learned at HERA? (protons)

Gluons and Quarks

Gluons only

what happens when x ---> 0?

Resolving the hadron Ren.Group-DGLAP evolution (sums large logs in Q^2) increasing Q^2 Phase space density decreases (# partons / area / Q^2)

proton becomes more dilute...

Where may the standard "DGLAP" picture fail ?

 $F_L (\propto \alpha_S x G(x, Q^2))$ is a positive definite quantity

collinear factorization

collinear factorization

Incoming partons have $k_{+}=0$

Quark and gluon distributions are universal, evaluated at hard scale Factorization theorems are proven to all order in $\alpha_{\rm s}$

collinear factorization

 $\otimes d\hat{\sigma}^{c}_{ab}(x_1 P_{H1}, x_2 P_{H2}, P_h/z, M^2)$

partonic cross sections

systematic expansion in the coupling constant process dependent

pQCD in pp Collisions at RHIC

pQCD in pp Collisions at RHIC

STAR

How about a nucleus ?

A point particle: $\lambda_{\tau} >> 10$ fm

A collection of nucleons: $\lambda_{\tau} \sim 1 \text{ fm}$

A system of quarks and gluons:

 $\lambda_{\tau} \ll 1 \text{ fm}$

How about a nucleus ?

A point particle: $\lambda_{\tau} >> 10$ fm

A collection of nucleons: $\lambda_{\tau} \sim 1 \text{ fm}$

A system of quarks and gluons:

 $\lambda_{\tau} < 1 \text{ fm}$

RHIC, LHC

RHIC, LHC

I) modification of initial state: "nuclear shadowing"

RHIC, LHC

I) modification of initial state: "nuclear shadowing"

II) modification of hard scattering: multiple scattering

RHIC, LHC

I) modification of initial state: "nuclear shadowing"

II) modification of hard scattering: multiple scattering

III) modification of fragmentation functions?

Modification of the nuclear structure functions (shadowing)

can one understand shadowing from pQCD?

Beyond pQCD in Bj limit

★ Works great for inclusive, high Q² processes

 \star Higher twists important when Q² is low

★ Problematic for diffractive/exclusive processes

 Formalism not designed to treat shadowing, multiple scattering, diffraction, energy loss, impact parameter dependence, thermalization...

The Regge-Gribov limit

$$x_{\rm Bj} \to 0; s \to \infty; Q^2 (>> \Lambda_{\rm QCD}^2) = \text{fixed}$$

Physics of strong fields in QCD Multi-particle production Novel universal properties of QCD

BFKL evolution

The infrared sensitivity of bremsstrahlung favors the emission of 'soft' (= small-x) gluons

Resolving the hadron

Gluon density saturates at $f = 1 / \alpha_s$ - strongest E&M fields in nature...

QCD Bremsstrahlung

QCD Bremsstrahlung

Non-linear evolution: Gluon recombination

Gribov,Levin,Ryskin

Parton Saturation

★ Competition between attractive bremsstrahlung and repulsive recombination effects

Maximum occupation number (f = 1/ α_{s}) => $\frac{1}{2(N_{c}^{2}-1)} \frac{x G(x,Q^{2})}{\pi R^{2} Q^{2}} = \frac{1}{\alpha_{s}(Q^{2})}$

This relation is saturated for

$$Q = Q_s(x) >> \Lambda_{\rm QCD} \approx 0.2 \ {
m GeV}$$

Need a new organizing principle to explore this novel physics regime of high energy QCD