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In the previous lecture, we discussed the importance of 
obtaining QCD predictions for multi-parton processes.   In 
principle, this is simple to do -- just compute the Feynman 
diagrams.  In practice, you know that these computations are 
not simple and can often be long and complicated.

Methods have been developed that dramatically simplify the 
computation of QCD amplitudes.  These methods also reveal 
unexpected properties of the amplitudes themselves that 
provide further simplification.

I will describe some of these methods in this lecture.  I will 
concentrate on the computation of tree amplitudes.  Similar 
techniques can be applied to the simplification of loop 
amplitude computations. 



A key feature of these methods is the analysis of scattering 
amplitudes between particles of definite helicity.

We have seen that this point of view already simplifies the 
analysis of the basic QCD scattering processes.  The 
simplifications are even greater for more complex processes.

Many of these developments are reviewed in articles of 
Mangano and Parke, Physics Reports, 1991, and Dixon, 1995 
TASI lectures.  I will describe also some new methods that so 
beyond the work described in these papers.



To begin, note that computations with massless particles can be 
dramatically simplified by the use of spinors of lightlike momenta

These objects are related to more familiar objects by 

The spinor products are square roots of Lorentz vector products:

The spinor products are antisymmetric.  They obey the following 
useful identities:

It is simplest to label the helicities as if all particles were outgoing.
An incoming L corresponds to an outgoing R.  This makes crossing 
symmetry automatic. 

〈12〉 = uL(1)uR(2) [12] = uR(1)uL(2)
|〈12〉|2 = |[12]|2 = 2k1 · k2

1〉 = uR(1) 1] = uL(1) 〈1 = uL(1) [1 = uR(1)

1〉[1 =
1
2
(1 + γ5) " 1

〈1γµ2]〈3γµ4] = 2 〈13〉[42]

〈12〉〈34〉 + 〈13〉〈42〉 + 〈14〉〈23〉 = 0

Fierz

Schouten



Here is a very simple example:  

Then 

which is correct ! 

e−Le+
R → qLqR

iM = (−ie)2〈1γµ2]
−i

s34
〈3γµ4]

= 2ie2 〈13〉[42]
〈34〉[43]

× 〈31〉
〈31〉

= −2ie2 (〈13〉)2

〈34〉〈12〉

|M |2 = 4e4 u2

s2
= e4(1 + cos θ)2



Photon and gluon polarization vectors for momentum k are 
conveniently written in terms of spinor products involving k and 
a second lightlike “reference” vector r:

The logic of this choice is:

     if k = 1 is parallel to z, r = 2 is parallel to -z: 

      
     a change in r is like a change of gauge and has no physical 
          effect.   We can choose r for maximum convenience, 
          independently in each helicity amplitude.

εµ
+(k) =

1√
2
〈rγµk]
〈rk〉 εµ

−(k) = − 1√
2

[rγµk〉
[rk]

〈2γµ1] = uL(2)γµuL(1) =
√

s12 · (0, 1,−i, 0)



Another example:

choose r = 1 for 3
           r = 4 for 2

second diagram:

first 
   diagram: 
 

〈1γµ · · · 〈1γµ3]
〈13〉 · · · = 〈11〉 · · · = 0

which is correct!

(−ie2)〈1γµ (1 + 2)
s12

γν4] · 1√
2

[4γµ2〉
[42]

· −1√
2
〈1γν3]
〈13〉

= 2ie2 〈12〉[4(1 + 2)1〉[34]
[42]〈12〉[21]〈13〉

= 2ie2 〈21〉[34]
[21]〈13〉

= 2ie2
( t

u

)1/2



We can incorporate massive vector bosons such as W by decaying 
them to massless fermions (Kleiss and Stirling).  Schematically, 
replace

To correctly normalize the result, consider

contract:

This shows that

As a bonus, the generated final state fermions correctly represent 
the polarization of the W’s.  A similar trick works for top quarks.   

εµ(Q) → uL(1)γµuL(2) = 〈1γµ2]

∫
dΩ
4π

〈1γµ2]〈2γν1] = A(ηµν − QµQν/Q2)
∫

dΩ
4π

2〈12〉[12] = A · 3

3
2m2

W

∫
dΩ
4π

〈1γµ2]〈2γν1] =
∑

i

εµ(Q)ε∗ν(Q)



Now think about QCD.  It is very convenient to write QCD 
amplitudes in terms of color structures 

To do this, write

To leading order in       , the color-ordered amplitudes A do 
not interfere.  Square them and multiply by the power of          
indicated by the number of color loops.

= tr[T1T2T3T4]A(1, 2, 3, 4) + · · ·

=                            +  5 other color structures

ta =
1√
2
T a ifabc =

−i√
2
tr[T aT bT c − T aT cT b]

NC
NC



ig√
2
(ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν)

ig2

2
(2ηµρηνσ − ηµνηρσ − ηµσηνρ)

ig√
2
γµ

Color-ordered amplitudes can be computed with the color-ordered 
Feynman rules: 

It can be shown that given color-ordered amplitude has only the 
singularities from collinear singularities in its color-ordering:

∼ 1
(2k1 · k2)(2k2 · k3) · · · (2kn · k1)



Illustrate this for the 4-gluon amplitude.

Every term contains at least one      .  For all + helicities, choose 
the same reference vector r for all gluons.  Then use

The whole amplitude is zero!

= (
ig√
2
)2

[
−i

s12
[gµν(1− 2)α + 2gνα2µ − 2gαµ1ν ][gσλ(3− 4)α + 2gλα4σ − 2gασ3λ]

+
−i

s41
[gλµ(4− 1)α + 2gµα1µ − 2gαλ4ν ][gνσ(2− 3)α + 2gσα3σ − 2gαν2λ]

+ (−i)[2gµσgνλ − gµνgλσ − gλµgνσ]
]

· εµ(1)εν(2)εσ(3)ελ(4)

εµ
+(1)ε+µ(2) =

1
2
〈rγµ1]〈rγµ2]

〈r1〉〈r2〉 =
〈rr〉〈12〉
〈r1〉〈r2〉 = 0

gαβ



This argument works for any n-gluon amplitude with all + helicities.

Working a little harder, one can show that all amplitudes with one  
- helicity and all others + also vanish.

There are two types of nonvanishing amplitudes:

There is a strange property here that we found also in the 
                             example.  The final answer has only angle 
brackets, with no square brackets.

= −ig2 〈12〉1[34]2

s12s14
= ig2 〈12〉4

〈12〉〈23〉〈34〉〈41〉

= ig2 〈13〉4

〈12〉〈23〉〈34〉〈41〉

e−Le+
R → qLqR



Parke and Taylor showed that there is a general property here 
that applies to tree amplitudes with arbitrarily many gluons:

Notate:

Then:

All amplitudes with all + or only one - vanish.  Similarly, all 
amplitudes with all - or only one + vanish.

Amplitudes with two - and all the rest + have the following 
simple form:

 These are called Maximum Helicity Violating (MHV) amplitudes.

iM(1−, 2−, 3+, 4−, 5−, 6−, 7+) =

iM(1+ . . . i− . . . j− . . . n+) = ign−2 〈ij〉4

〈12〉〈23〉 · · · 〈n1〉



This result applies not only to multi-gluon amplitudes but also 
to other amplitudes of interest.  Here are two more MHV 
formulae:

The second formula crosses into an MHV formula for

and we can use this to compute heavy particle production at 
LHC. 

iM(qLg+
2 g+

3 · · · g
−
i · · · g

+
n−1qR) = ign−2 〈1i〉3〈ni〉

〈12〉〈23〉 · · · 〈n1〉

ud→W+ + ng → !+ν + ng

iM(e−Le+
RqLg+

4 g+
5 · · · g

+
n−1qR) = −ig2

wgn−4 〈13〉2

〈12〉 〈34〉 〈45〉 · · · 〈n − 1 n〉



I will sketch a derivation of these formulae, but, first, 
consider some applications.  For example, derive the cross 
section for                 .

Square the factor in brackets, and use
to find: 

Add the square of the other nonzero amplitude; this gives 
finally:

uu→ gg

iM(u−(1)g+(2)g−(3)u+(4))

= ig2

[
T aT b 〈13〉3〈43〉

〈12〉〈23〉〈34〉〈41〉 + T bT a 〈13〉3〈43〉
〈13〉〈32〉〈24〉〈41〉

]

[
u3t

t2s2
+

u3t

u2s2
− 1

4
u3t

uts2
] = [

u

t
− (2 +

1
4
)
u2

s2
]

u2 + t2 = s2 − 2ut

[
u

t
+

t

u
− 9

4
u2 + t2

s2
]



Next, derive the cross section for

The square of this gives:

Average over the orientation of the 12 axis, and add the 
amplitude of (g-(4)) to find

            

e+e− → qqg

iM(e−(1)e+(2)q−(3)g+(4)q+(5)) = e2g
〈13〉2

〈12〉〈34〉〈45〉

s2
13

s · s(1− xq) · s(1− xq)

x2
q + x2

q

(1− xq)(1− xq)



There are nonzero 3-point MHV amplitudes. 

These are on-shell 3-gluon amplitudes.  It seems odd that such 
amplitudes could make sense because

However, if we allow external momenta to be complex, this 
condition implies only

so there are complex momenta for which these are proper on-
shell amplitudes.

I will now show that these 3-point amplitudes are building blocks 
that can be used to construct the most general on-shell n-gluon 
amplitudes.

iM(1−2−3+) = ig
〈12〉4

〈12〉〈23〉〈31〉 iM(1+2+3−) = −ig
[12]4

[12][23][31]

32 = s12 = 〈12〉[21] = 0

〈12〉 or [21] = 0



This is part of a general question:  How do we use the MHV 
amplitudes to derive n-gluon amplitudes for more general 
helicity states ?   I will now describe a beautifully simple 
method, discovered by Britto, Cachazo, and Feng.

It would be wonderful to build up non-MHV amplitudes from the 
simple MHV expressions.  But it is not so obvious how to do this. 
MHV amplitudes are on-shell expressions, but if we cut the more 
complex amplitudes, we will have to evaluate them off-shell.

Or do we ?   BCF suggested that we pick legs i and j and shift

for     a complex variable. Then the shifted Q can be on-shell.

i] → i] + z j] j〉 → j〉 − z i〉
z



Now consider

The first term is the amplitude that we wish to evaluate.  The 
contour at      vanishes if we choose i and j correctly (e.g  i a   
− gluon and j a + gluon).   The additional poles result when a 
momentum on an intermediate line satisfies  

Looking again at the diagram,

and so 

∮
dz

2πi

iM(z)
z

= iM(z = 0) + (other poles) = (contour at ∞)

Q(z)2 = 0

Qµ(z)γµ =
b∑

k=a

k〉[k − z i〉[j
a

bz∗ =
sa...b

〈i(
∑

k〉[k)j]

∞



Tidying up the formula, one finds the following relation:

called the Britto-Cachazo-Feng (BCF) recursion formula.

Momenta with hats have the shift with     .  The hatted momenta 
are complex but satisfy             , so the amplitudes on the right-
hand side are to be evaluated on shell!

This allows the n-point amplitudes to be recursively evaluated in 
terms of amplitudes with fewer legs.  We can stop when we reach 
MHV.  At 5 points all amplitudes are MHV or anti-MHV.

z∗
Q̂2 = 0

iM(1 · · ·n) =
∑

splits

iM(b + 1 · · · î · · · a− 1 − Q̂)

· 1
sa···b

· iM(a · · · ĵ · · · b Q̂)



As an illustration, derive the n-gluon MHV amplitude from the 
(n-1)-gluon MHV amplitude: Let 1, j be the - helicities.  Apply the 
shift:

The BCF recursion is                                  Risager

The first diagram on
the right is zero, 
because 

So only the last diagram is nonzero.

1̂] = 1] + z 2] 2̂〉 = 2〉 − z 1〉

1̂2 = 0→ [nQ̂] = 0



The value of this diagram is

with 

This implies

The factors of         all cancel, and we find

By induction, the Parke-Taylor MHV result is true for all n.

Q̂ = −2〉[2− 3〉[3 + z 1〉[2

〈1Q̂〉[Q̂3] = −〈12〉[23]
〈4Q̂〉[Q̂2] = −〈43〉[32]

[23]

ign−3 〈1j〉4(−1)
〈1Q̂〉〈Q̂4〉〈45〉 · · · 〈n1〉

i

〈23〉[32]
(−ig)

[23]4

[Q̂2][23][3Q̂]

ign−2 〈1j〉4

〈12〉〈34〉〈45〉 · · · 〈n1〉 · 〈23〉



I would like to illustrate the use of the BCF recursion formula by 
computing a non-MHV contribution to                                        .
This crosses into a contribution to W + 2 jets, which we would 
need to compute the mass distribution of the hadronic system 
recoiling against a W or Z.

Using the shift

we find

I will evaluate the first of these BCF cuts.

e+e− → qq + 2 gluons

12

3

4 5

6

+

+
6

+
6

+

+ 4+ 4+_
5_ 5_

_
12

+ _ 12
+ _

_

3
_

= 3
_

+

^ ^ ^ ^

5̂] = 5] + z 4] 4̂〉 = 4〉 − z 5〉



where

Multiply the formula top and bottom by           and work out the 
pieces:

Q̂2 = 0 for z = − s56

〈5(5 + 6)4]
= − [65]

[64]

Q̂ = −5〉[5− 6〉[6− z 5〉[4

[Q̂4]2

〈5Q̂〉[Q̂4] = −〈56〉[64]
〈6Q̂〉[Q̂4] = −〈65〉[54]
〈4̂Q̂〉[Q̂4] = −s456

〈34̂〉 = 〈3(4 + 5)6]/[46]

−ig2
wg

〈13〉2(−1)
〈12〉〈34̂〉〈4̂Q̂〉

i

s56
ig

〈Q̂5〉3〈65〉
〈Q̂5〉〈56〉〈6Q̂〉

= ig2
wg2 〈13〉2〈5Q̂〉2

〈12〉〈34̂〉〈4̂Q̂〉〈6Q̂〉



in all 

combining with the other BCF cut, the complete amplitude is

In practice, there is no need to write such expressions explicitly. 
They can be generated by automating the BCF recursion, using 
the appropriate complex momenta directly.

−ig2
wg2 〈13〉2[46]3

〈12〉[45][56]s456〈3(4 + 5)6]

−ig2
wg2

{
〈13〉2[46]3

〈12〉[45][56]s456〈3(4 + 5)6]

+
[26]2〈35〉3

[12]〈34〉〈45〉s345〈3(4 + 5)6]

}



These and other new tools for QCD perturbation theory will 
make it easier to compute multi-parton cross sections of 
interest for LHC.  I hope you will find some interesting and 
useful applications of these techniques.


