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Motivation

Small things, big problems

One of the greatest problems of theoretical physics is the
incompatibility of Einstein’s General Relativity and the principles
of Quantum Mechanics.

—>  We are searching for a quantum theory of gravity

The Standard Model of particle physics, despite its great success,
can not be last word, there are a lot of open questions, e.g.,:

—>  Why so many parameters (more than 20)?
—>  Why 26 fields? Why 3 generations?
—> Hierarchy problem

—> How do we describe QCD at low energies?



Big things, also big problems

An important question that needs to be answered is what
is our universe made of?

Atoms
4.6%

Dark
Energy

72%

———> Dark matter (23%)? Dark
Matter

———> Dark energy (72%)? 23%

TODAY

None of these questions seems to have a simple answer

Fortunately, a lot of people with great ideas and very different
approaches are trying to solve the puzzles...

One of these roads is STRING THEORY



Why string theory?
Pros:
e String theory is a promising candidate (at least for some
people) for the long-sought quantum mechanical theory of
gravity.
e String theory has the potential to unify the four fundamental
forces of nature.

* Interesting new physics (extra dimensions, supersymmetry,
more fields, etc)

* A new tool to study certain strongly coupled gauge theories:
The AdS/CFT correspondence



Why string theory?

Cons:

* No direct experimental evidence

* It is far from certain that it describes our world

e String theory has not been able to obtain the Standard Model
(similar theories)

* The complete theory still unknown. Lack of a non-perturbative
definition

* 10 dimensions?



The relativistic point particle

To preserve manifest Lorentz covariance, we use parameterized
description X" (7):

XUA XH (Tf)
/Xm World-line
| | T
T3 Tf
Parameter J{ > X
X2 X’LL<7'Z)

The action is (Lorentz scalar):

S = —m X (proper length)

Tf
S[X] :_m/ dT\/—gTT



The relativistic point particle

To preserve manifest Lorentz covariance, we use parameterized
description X" (7):

XUA ‘X;M (Tf)
/Xm World-line
| | T
T3 Tf X
[ > X
X XH(7)

The action is (Lorentz scalar):

Ty
S| X]| = —m/ dr/—G 0, X+0, XV
where G, = spacetime metric

and 9rr = G0, X"0, X" = induced metric on worldline



The symmetries of this action:

e Spacetime reparametrization invariance (if G then
Poincaré invariance)

. L , /
« Worldline reparametrization invariance 7 — 7' (7)

pwr — Nuv

As usual, we define:

oL —mXH

0(0-XH)  \/_x2

and P, satisfies the condition: P, P" + m? = (0 (first class const.)

mmm) D-1 degrees of freedom.

Can we generalize this to a 1-dimensional object??



The relativistic bosonic string

Open strings Closed strings
0
ﬁ XH(T,0) "‘
—
X3 X4 / Xl(X3, )
World-sheet World-sheet

XQ

The world-sheet is described by the embedding functions: X* (7, o)



And in complete analogy with the relativistic point particle:

S[X] = —T x (proper area) (T = tension)

SNg[X] = —T/deU\/—detgab

SNg[X] —= —T/deO'\/— det GWZ?QXH(%XV

where g = G, 0, X" 0, X" = induced metric on the worldsheet
Explicitly,

—det ggp = (X - X')? — X2X"* (X =0.X X' =09,X)

where [ is the fundamental string length



And in complete analogy with the relativistic point particle:

S[X] = —T x (proper area) (T = tension)

SNg[X] = —T/dea\/—detgab

SNg[X] —= —T/deO'\/— det GWZ?aXHE?bXV
where g = G, 0, X" 0, X" = induced metric on the worldsheet

This is known as the Nambu-Goto action

What are the symmetries of this action?



The symmetries of the Nambu-Goto action:

e Spacetime reparametrization invariance (if G

wr = My then
Poincaré invariance)

* Worldsheet reparametrization invariance (r,0) — (7'(,0),0'(7,0))
Now, we have:

I oL _ . (X - X)X, -X"°X,
% R
OXH \/(X-X’)2—X’2X2

And there are two first class constraints:

==

(HM)X/M =0

mmm) (D-2) degrees of freedom
(IL,)? + T3 (X"")? = 0

—



The Nambu-Goto action is non-polynomial, so it is convenient to
work with what is known as the Polyakov action

T
SP[X, hab] = D) /de(f\/ —hh“waﬁaX“abX” (h = det hab)

where h,, = intrinsic metric on the worldsheet , and the other elements
are the same as before.

Auxiliary variable in the world-sheet.
(Lagrange multiplier)
Open string world-sheet

The equation of motion for /. :

05 1
5h61;? =0 w— T, =g, — ihathdgcd =0

Solution: huy(o,7) = XNo,7)gap(o,7)  (A(o,7) arbritrary fuction)



The symmetries of the Polyakov action:

* Spacetime reparametrization invariance (if G, = 7, then
Poincaré invariance)

* Worldsheet reparametrization invariance (r,0) — (7'(7,0),0' (1, 0))
* Weyl invariance: h.,(7,0) = Q(1,0)ha (7, 0)

Due to Weyl invariance 7% =0 , so ha(7,0) instead of three

independent components it has only two (first class constraints).

Then, as expected: (D-2) degrees of freedom

Note: for the rest of the talk we will consider G, = 1,

i.e., Minkowski spacetime, and also "2ab = 7Tab (the latter can
be found using properties of two-dimensional geometry and
worldsheet rep. invariance)




Rewriting the Polyakov action with G, = 7, and hy, = 174y :

T
Sp = —3 /dea(nabaaX - OpX)

and the equation of motion is

0?0
<@ — ﬁ) XH(1,0) =0 (wave equation!)

This is massless Klein-Gordon in (1+1)-dim for D scalar fields

To find a solution we now need to impose the boundary conditions




Boundary conditions

Closed string: X*(r,0) = X*(r,0+27) 0<0 <27 (Periodic)
Openstring: 0<o <
1- Covariant under Poincaré:
O, XH(1,0) = 0, X*(1,m) =0 V 7 (Neumann: free endpoints)
2- Non covariant under Poincaré
0; X" (1,0) =0, X"(r,m)=0 V 7i=p+1,...,D—1

mmp X'(7,0)=X'(r,7)=c" (Dirichlet: fixed endpoints)

This last case has very important implications (2nd part).




Closed string quantization

We want to solve the e.o.m. 9°X"(7,0) =0 with periodic b.c.

Recall the Fourier mode expansion for a massless scalar field in 1+1 dim

O 1 1 O —1 O
¢(070):/ oY ape™” —i—a;ge 771 with p-az—EpaO+p01
— 00 \ 2]

The solution we are looking for is almost a rewriting of the above:

[2 1 : :
_ 2 - [ 's - —in(7+o0) ~ i, —in(T—o)
XM (r,0) =a" +1EphT + 4/ 5 g n(aﬁfbe + ale )
n#0
with:

_ . In _ . n
Oy = —1 %Cb_n ad_p =1 %a_n vV n>0
~ _ . n —i— ~ . n T
Oy = —1 %an O_p =1 %an Y n>0



Closed string quantization

We want to solve the e.o.m. 9°X"(7,0) =0 with periodic b.c.

Recall the Fourier mode expansion for a massless scalar field in 1+1 dim

“dp 1 - |
0 _1 o _ip-o
p(o”,07) = / o \/7 lape™? + a;ge 771 with p-o = —Epao + pot

The solution we are looking for is almost a rewriting of the above:

[ ]2
X“(T,O’) :LTJL+l§qJT+Z l Z Oé’u —zn(T+0)+&u —’Ln(’r J))

n70 " L

|
Position of Center of mass T String oscillations

Momentum of center of mass

Right-moving mode

Left-moving mode




Closed string quantization

We want to solve the e.o.m. 9°X"(7,0) =0 with periodic b.c.

Recall the Fourier mode expansion for a massless scalar field in 1+1 dim

O 1 1 O —1 O
¢(070):/ oY ape™” _|_a;r9€ 771 with p-az—EpaO+p01
— 00 \ 2]

The solution we are looking for is almost a rewriting of the above:

[2 1 . .

Discrete momentum: p = n
(circle)




Doing canonical quantization:
XH(1,0) and 11*(7,0) ) X*(r,0) and II*(r,0)

We have: [X”(T, o), ﬂ,,(T, ') = i6"6(oc — o)

g—

_x'uap ] — inuz/
identical to:
(Al AV 7%
m? 'n - m,n
r 2 Y v
_Oé%, an] = m5m,—n77“

And now we can construct the Fock space...

As usual, let’s define the vacuum state | 0,0; k) such that:

al 10,0;k)=0=ak|0,0;k) V n>0



For example, some of the states are:

\_Y_} \ Y I \ Y

Vacuum: no oscillators  One left-moving oscillator Two left-moving oscillators

10,0; k) ()] 0,0;k) (o) ()T 10,0 k)
J

But, there is a problem: there are states with NEGATIVE norm.

For example: (2)7]0,0;k) ¥V n>0

| (@)T10,0;k) [*=(0,0;k | o (ap)T | 0,0; k) = —n(2m)” 57 (0)

So what do we do?

Remember: not all states are physical

We must impose the constraints



For example, some of the states are:

0,05 k) \(oc%)* | 0,0; k>} () ()T ] 0,0; kl
| |

Vacuum: no oscillators  One left-moving oscillator Two left-moving oscillators

But, there is a problem: there are states with NEGATIVE norm.

For example: (2)7]0,0;k) ¥V n>0

| (@)T10,0;k) [*=(0,0;k | o (ap)T | 0,0; k) = —n(2m)” 57 (0)

Meaning that:

T.p|10) = 0 (analogue to the Gupta-Bleuler
method for the Maxwell field)



. 1
First, recall: 70, = gup — éhathdgcd =0 and T, =0 (Weylinvariance)

+
Let’s define: { J_

O =T—0

=77 % and rewrite T

1
Ty = 5(Too + To1) = 0+ X104 Xy 0,Tup =0 T, . =T, . (o

1 T _=T_ _(067)
T = (T — Tor) = 0-X"0_X,

")

and now, we can expand 7. (¢") and 7__(o" ) in Fourier modes, i.e.,

n=0o » n
Moo= Y e Lo L,

T (07)= S Lne ™ 5 fi-i



It is possible to write the Fourier coefficients in terms of
@y and a_, (and the right-moving modes):

Lm;i:oamn’an and Zm;i:o&mn&n

When dealing with quantum theories, one must resolve ordering
ambiguities. In our case we just have an ambiguity in Lo (Lo) ,
one can show that:

1
L= 1) i+ Yo 1)

Ordering constant !

So, using the constraints translates into:

(Lo — DY) =0= (Lo — 1)|y))

Closed string -« L,,~o|Y) =0 = Ly,~0|?)

(N = N)jp) =0

—



So now we are ready to determine the physical states...
From the first condition: (Lo — 1)|¢)) = 0= (Lo — 1)[3)

[2 :
(Lo—1= ZSpQ + N —1) we find that

and using M° = —p’

) ~

) 4
* N=N=0 — M'=—5

S

State: |(0;k)

Scalar field T'(z) with negative mass squared called tachyon
d*V (T)

sign of instability because
(sig y <0




So now we are ready to determine the physical states...
From the first condition: (Lo — 1)|¢)) = 0= (Lo — 1)[3)

[2 :
(Lo—1= ZSpQ + N —1) we find that

and using M° = —p’

) ~

N=1=N — M*’=0
States: ¢,/ a”,|0,0;k) with k*=0
Li(ea”1a”1]0,05k)) o (g - 1 + - - +) (et 167 1]0,0;k)) =0
(the same with L; )

physical state <«——» k¢, =0=1F"¢,,



So now we are ready to determine the physical states...
From the first condition: (Lo — 1)|¢)) = 0= (Lo — 1)[3)

[2 :
(Lo—1= ZSpQ + N —1) we find that

and using M° = —p’

) ~

States: ¢,,a",a”,]0,0;k) with %% =0

Important: States of the form [¢) = L}|x) are irrelevant because
(phys|Li|x) =0 V |phys), meaning that they are orthogonal to all
physical states.

At the end what we have is:



Physical states: ¢;;a’ ;a’ ,0,0;%k) with i,j =2,...,D —1

1. Trace: ¢;; < 0;; —> Spinless particle;

1 state, scalar field called the dilaton ¢(x)

2. Symmetric (traceless) part: €i;) — spin 2 particle;

(D—-2)(D—-1)

5 _ 1 states; the graviton h,,(z)  (9ur = N + )

3. Antisymmetric part: €.

(D — 2)2(D —3) states; called Kalb-Ramond field B, ()

4

e N=N>2 M22l2

Very heavy!!!

And what about the open string quantization?



Open string quantization
Again, want to solve 9°X"(7.¢) =0, now with Neumann b.c.
l.e.,, O0,X"(1,0)=0,X"(r,m)=0 V 71

As a consequence of b.c.: ;, =&, V n  (stationary wave)

The solution to the e.o.m. :

F :
XH(r,0) = 2" + 2a'p" T + iV 2! Z Tn e=in7 cosno
n
n#0

The quantization process is exactly the same as for the closed string

(But just with one set of oscillators)

Let’s jump directly to the spectrum...



The constraints translate into:

Open string (Lo = 1)) =0
Lm>0‘w> =0
N —1
Using the first condition: M? = 2

1
e N=0 — M2:—l—2 State: |0;k)

S

Open string tachyon field ¢(z)
e N=1 —> M?*=0 States: €.0"1|0;k)

If ¢ k" =0 — physical state: ¢,0’ |0:%k) with i=2,...,D—1

(D —2) states of a spin 1 particle <—> Massless vector field 4, (z)



To sum up:

Closed string spectrum: Open string spectrum:

* Tachyon field 7(x) * Tachyon field ()

* Dilaton ¢(x) * Maxwell field A, (z)

* Graviton h,.(z) * Scalar fields (Dirichlet b.c.) ¢ (z)
* Kalb-Ramond field B, (z) * Infinite tower of massive

* Infinite tower of massive fields (very heavy!)

fields (very heavy!)
Final comments:

Turns out that to have no negative norm states need D < 26,

and in particular with D = 26 the spectrum is the same as for
an alternative approach where the gauge is completely fixed
before quantization (called the light-cone quantization).

Two important problems (at least): we don’t want tachyons in the
theory, and more importantly there are no fermions!!



To sum up:

Closed string spectrum: Open string spectrum:

* Tachyon field 7(x) * Tachyon field ()

* Dilaton ¢(x) * Maxwell field A, (z)

* Graviton h,.(z) * Scalar fields (Dirichlet b.c.) ¢ (z)
* Kalb-Ramond field B, (z) * Infinite tower of massive

* Infinite tower of massive fields (very heavy!)

fields (very heavy!)
Final comments:

Turns out that to have no negative norm states need D < 26,

and in particular with D = 26 the spectrum is the same as for
an alternative approach where the gauge is completely fixed
before quantization (called the light-cone quantization).

This is why we need SUPERSTRING THEORY




Before we continue, let me say that by studying how all these fields
interact it is possible to construct and effective action.
In particular, for the massless modes of the closed superstring:

1 ' 1 1 1
— dlo R__ 2__—¢H2__2¢F2
1 1
—§6¢F3 — ZF’S] (27'( 2l8 /C4 A H3 A F3

Note: don’t worry about the details...

This is known as the supergravity action (and corresponds to the
low energy (I < 1/15) limit of Type IIB string theory).

There is also an affective action for the massless modes of the open
superstring and we will check it later on.



D-branes

Within string theory, spacetime is only part of a much more
complex structure

whose small excitations are strings and whose large, solitonic
excitations include what we generically call: BRANES

. s A

O-brane 1-brane 2-brane 3-brane

with masses m oc 1/gs or m o 1/g2, i.e., very heavy!

We will center our attention on solitons of the first kind, known as:
D-BRANES



Remember b.c.:
X'(1,0)=X"(1,m)=c" i=p+1,...,D—1 (Dirichlet: fixed endpoints)
Do X*(1,0) = 0, X%, m) =0 a=0,...,p (Neumann: free endpoints)

From the quantization of the open string one finds that:

—» A D-brane has a Maxwell field, and massless scalar field for
each normal direction, living on its world volume.

—» The scalar fields represent the fluctuations of the D-brane in the
transverse directions.

3

Tp

M1
V (27r)pgsl§+1

p

QDp under 0012...p




Remember b.c.:
X'(1,0)=X"(1,m)=c" i=p+1,...,D—1 (Dirichlet: fixed endpoints)
Do X*(1,0) = 0, X%, m) =0 a=0,...,p (Neumann: free endpoints)

From the quantization of the open string one finds that:

— A D-brane has a Maxwell field, and massless scalar field for
each normal direction, living on its world volume.

—» The scalar fields represent the fluctuations of the D-brane in the
transverse directions.

D-branes are dynamical objects with mass and charge

How do we describe their dynamics?



Again, using a generalized version of the relativistic point particle
action, we have:

S =-Tp, / drrie \/ —detg,, gy = induced metric on the world-volume

This action just describes how the D-brane moves but doesn’t say
anything about the Maxwell field.

It turns out that in the low energy limit (£ < 1/1,) and when
spacetime variation of the fields is small:

1

which describes a U(1) gauge theory in p + 1 dimensions with
D — p —1 scalar fields.



Again, using a generalized version of the relativistic point particle
action, we have:

S =-Tp, / drrie \/ —detg,, gy = induced metric on the world-volume

This action just describe how the D-brane moves but doesn’t say
anything about the Maxwell field.

It turns out that in the low energy limit (F < 1/I,) and when
spacetime variation of the fields is small:

1

and if 9.~ = 7. then

/ Maxwell’s lagrangian

1
N +1 24 14
Ve (27)” g8 /dp ‘ (1 S +>




And with N parallel Dp-branes?

Ay (@)
N — ) 1<I,J<N
®7 7 ()

N = 2(7T—p)/2 Super Yang-Mills (SYM)theorym D=p+1
dimensions with SU (N ) gauge group and gYM = (2m)P~ 29312;_3

In particular, for p = 3, which is the case we will be interested in,
the low energy theory is:

N =4 Super Yang-Mills (SYM) theory in (3+1) dimensions with
SU(N) gauge group

We have mentioned that D-branes are very heavy objects, so we
would expect these branes to deform the spacetime.



Black p-branes

Extended p-dimensional versions of charged black holes.

For low energies, a black p-brane can be described as a solution
to the supergravity equations of motion.

Recall: In 4 dimensions, if you want a static and spherically
symmetric solution you obtain the Schwarzschild black hole. If
you coupled gravity to a U(1) gauge field you will get the
Reissner-Nordstrén black hole.

Let's focus only on p=3 (because that is what we will need later)

We are looking for a solution of the e.o.m. that is translationally
and rotationally invariant in 3 spatial directions and is charged

under 00123



The extremal black 3-brane solution

The metric:

ds? = 73 (—dt® + da? + da? + da?) + 2 (dr® + r2dQ2)

4
with f=1+4 R—4 and R'=4rg,0/*N
r
r " T = R v
r> R — A
\ l
Throat — S° _
0<r<R Closed string

r =0 Horizon

Relation between the mass and the charge: M/ >  E—
(27)° gsls

(BPS bound)

N

- - —> Sameas stack on N D3-branes!
(27) gsllsH_

Extremal: M =




The non-extremal black 3-brane solution

The metric:
ds? = f7% (=hdt? + di®) + %(dﬂ + r2dQ3)
4 4
with f:1+R—4 and h = —T—ZI
r r

Throat =
O<r<R

Closed string
" =71y Horizon

T =

N

Non-extremal: M > E—
(27)" gsls




The non-extremal black 3-brane solution

The metric:
ds? = f7% (=hdt? + di®) + ‘%Q(er + r2dQ3)
4 4
with f:IqLR—4 and h = —T—Z
r r

Throat =
O<r<R

Closed string
" =71y Horizon

r =1

From now on, let’s just focus on the extremal solution



Two alternative descriptions of the same object?

N Q

gm—

Throat -
0<r<R -
i r=( Horizon
Under perturbative control Under perturbative control

when: R/ls>1 and g, <1 when:nd gs < 1
which can be rewritten:

(R* = 47T(2)gs N1%)

Let’s investigate the low energy limit of these two descriptions



The AdS/CFT correspondence

[Maldacena (1997); Gubser, Klebanov, Polyakov; Witten (1998)]

First description:

Low energy limit: £ < 1/1,
(ls =0 and FE fixed)

S—

S = Ssugra =+ Sbrane =+ S’int

Ssugra = describes the massless modes of the closed strings

S1rane = describes the excitations of the D3-branes which
corresponds to N = 4 SYM in (3+1) dimensions
Sint = describes the interactions between closed and open

strings



The AdS/CFT correspondence

[Maldacena (1997); Gubser, Klebanov, Polyakov; Witten (1998)]

First description:

Low energy limit: £ < 1/1,
(ls =0 and FE fixed)

—

S = Ssugra =+ Sbrane =+ S’int

Turns out that in this limit the open and the closed strings no longer
interact with each other. So we obtain two decoupled systems:

Free supergravity in flat (9+1) spacetime + N = 4 SYM in (3+1)




Second description:

55

Low energy limit: £ < 1/1,

(Is =0 and E fixed) (')I'ero<a%"

r=(0 Horizon

ds? = f7% (=dt? + da? + da? + da?) + f2 (dr? + r2dQ2)
4
with f=1+— and R'=d4mg,a”*N
T

Something very important about this metric: g:: is not constant,

so, there is a non trivial relation between the energy measured
by an observer at infinity and the energy at a fixed value of the

coordinate 7: 1
R*\ *
E= (1 + —4> E,
/”0



Therefore, if we take an object very close to » = (,
the observer at infinity will measure very small energies

Now, let’s consider the low energy limit for two regions:

—> Far from the horizon: Just as before, we have free sugra in
flat spacetime

—> (Close to the horizon: due to the red shift effect, we have
strings with arbitrary local energies

Due to gravitational potential, the string modes of these two
regions can not interact with each other. So again, we obtain

two decoupled systems:

Free supergravity in Type IIB string theory in

flat (9+1) spacetime * the region close to the
horizon




Therefore, if we take an object very closeto r = (O,
the observer at infinity will measure very small energies

Now, let’s consider the low energy limit for two regions:

—> Far from the horizon: Just as before, we have free sugra in
flat spacetime

—> (Close to the horizon: due to the red shift effect, we have
strings with arbitrary local energies

But, what is the region close to the horizon?

4

If » < R then f o~ R_4 and we can write:
r

2

RZ
ds?® = 77 (—dt* + dai + da3 + dz3) + T—zdﬂ + Rd):

| J \ J
| |

AdSs S°




Now, the final conclusion, we have two equivalent ways to describe
the same physical system, i.e., a stack of N D3-branes:

Free supergravity in Free supergravity in
) «—> )
flat (9+1) spacetime flat (9+1) spacetime
+ +

Type IIB string theory <«—> N =4 SYMin (3+1)
on AdSs x S° Minkowski spacetime

So, the conjecture is that:

Type IIB string theory on AdSs x S” is equivalent to A/ = 4
SYM on (3+1)-dim Minkowski spacetime




SU(N) N =4 SYM —  Type lIB string theory on
on flat 3+1 dimensions AdSs x S° spacetime

Field content:
AP ()
®'(z) I=1,...,6
A(x) a=1,...,4

All massless fields and in the adjoint rep.



SU(N) N =4 SYM —  Type lIB string theory on
on flat 3+1 dimensions AdSs x S° spacetime

2

R2
ds’ —dt® + dai + day + dx3) + —dr? + R*dQ;
r

:ﬁ<




IMPORTANT

Remember: String theory calculations are under control when the
coupling is weak and the curvature is small, i.e.

gs K 1 and R/lg > 1
which implies:

N>1 and g N > 1

i.e., we can study the gauge theory in the large N and strong
coupling limit.



IMPORTANT

Remember: String theory calculations are under control when the
coupling is weak and the curvature is small, i.e.

gs K 1 and R/lg > 1
which implies:

N> 1 and gyl > 1

Using the AdS/CFT correspondence we can obtain
useful information about SYM (and some other strongly
coupled gauge theories) doing simple calculations in
classical string theory on a curved background.




SU(N) N =4 SYM —  Type lIB string theory on
on flat 3+1 dimensions AdSs x S° spacetime

There is a dictionary (still under construction):

e N and 9YM e Us and R/l

. (t,7) . (¢, )

* Energy scale T

* Internal space e (01,02,03,0,)
* Conformal group SO (4, 2) * Isometry group SO(4,2) (AdS5)
* Internal symmetry SO(6) * Isometry group SO(6) (5°)

Geometry on RHS is dynamical, pure AdS5 correspond to SYM
vacumm. Excitations on top of AdS5 correspond to other SYM states.

(Tr|Pexp(1 7{ dxt A, (z))]) = exp[tS[X (r = 00)|



How different is SYM from QCD?

N =4 SYM T =0 QCD
« gyM does not run e gyM = gym(E)
e Deconfined * Confined at low energies
e Conformal (scale-invariant) * Non-conformal
e SUSY * No SUSY
« Matter in the adjoint rep. e Matter in the fundamental
But... 1 > 1T,
« Still deconfined * Deconfined
* SUSY broken * No SUSY
« Non- abelian plasma made * Non-abelian plasma

of gluons and matter in the adjoint. made of quark and gluons



How do we turn on the temperature?

N =4 SYM —  Type lIB string theory on
at finite temperature AdSs with a black hole
[Witten]
r=o0ocC
M — \ Black hole horizon //‘
T=THX 7
Plasma of gluons and matter r==00
in the adjoint T — 'H
. mR2
The metric:
1 . VH
ds?® = \/—ﬁ(—hdt2 + dx?) + Tdﬂ + R?dQ3
R4 fr‘%
with = vy and h=1- oy



Applications of AdS/CFT

1- The entropy of SYM plasma

M p— \ Black hole horizon /
I\ /

According to dictionary:

Ap
— S = —
Splasma BH 4GN
At weak coupling: At strong coupling:
2772 93 2772 DBt s O

[Gubser, Klebanov, Peet]



Then, 577" = 0.7557* which is similar to the results

plasma plasma 7

from lattice QCDat 7" ~ (1 — 4)7T, :

Energy and entropy densities ~ 0.8-0.85 of an ideal gas

3 flavour
2+1 flavour
2 flavour

From: F. Karsch, hep-lat/0106019



2-The shear viscosity of SYM plasma

M p— \ Black hole horizon /
I\ /

1 Ny o
1=l oo [ dae Ty @), Ty O)) = lim 1o, (@)

w—0 2w

AdS/CFT formula

Kubo’s formula
[Callan; Gubser, Klebanov, Polyakov; Witten]

1

n
ing: — ™ >> 1 [Arnold, Moore, Yaff
At weak coupling: (2 N2 log(1/g2N) [Arnold, Moore, Yaffe]

At strong coupling: U ~ i [Policastro, Son, Starinets]

S 47



2-The shear viscosity of SYM plasma

/

1

s 4 . wt _
1=l oo [ e (T, (@), Toy (O)) = lim 1o,

AdS/CFT formula

Kubo’s formula
[Callan; Gubser, Klebanov, Polyakov; Witten]

n 1
ing: — ™ >> 1 [Amold, Moore, Yaff
At weak coupling: (2 N2 log(1/g2N) [Arnold, Moore, Yaffe]

: 1 135¢(3)
At strong coupling: .o~ 1
s 477( T 8\3/2

4+ ) <1 [Policastro, Son, Starinets;
Buchel et al. 2005]



How do we add matter in the fundamental?

[Karch, Katz]
Quark Antiquark
D7-branes o —
antistring
string
r=rTrg
7“ =0

27Tcu

* The string endpoint represents the quark, while the rest of the
string codifies information about the gluonic fields.

* The quark velocity corresponds to the coordinate velocity of
the string endpoint. The relation between proper and coordinate

velocity is given by: (¥
T (i)

So AdS/CFT implies a bound for the quark velocity:

2 NT :
v < VUV, = \/1 _ (Tjrl{/rf%) ~ 1 — \/.m [Argyres, Edalati,

Vazquez-Poritz
qu q ]

<




How do we add matter in the fundamental?

D7-branes 7“ — p
antistring "
string
r=Trg

7“—(]

Quark Antiquark

And to represent a quark-antiquark pair :

r=rTyg




3- Energy loss: zero temperature

Infinitely massive quark:

T Intrinsic energy of the quark

Lienard’s formula!



3- Energy loss: zero temperature

Massive quark:

Y
e d
/ SR /

27T)2m2

Energy loss

F' = External force

t thQ( 2mmg — \/ Gy NUF
- (

(QYMN>F2

27Tm2 — /g3 NuF

(27)2m2 — (gYMN)F2>7m

1

Intrinsic energy of the quark

[MCh, Guijosa]



4- Energy loss: finite temperature

A heavy external quark moving at speed v experience a drag force

Ay =

Solving the classical e.o.m for the string it is easy to obtain:

2
b Y Q%MNTz v’ and dp _ TV gYMNT2 v
dt 2 V1 — 2 dt 2 \/1—’02

[Casalderrey, Teaney; Herzog, Kovtun, Karch, Kozcaz, Yaffe; Gubser]

Using 1 = —g we can estimate the friction coefficient:

AdS/CFT pQCD
[ = T/ g NT? Charm p~16 c/fm p~022 c¢/fm
2m [Gubser] [van Hees, Greco, Rapp]

(me = 1.4GeV, N = 3, g N = 67, T = 250MeV)



Conclusions

Just about the AdS/CFT correspondence:

* The AdS/CFT correspondence seems to be a useful tool to
obtain information about certain strongly-coupled gauge

theories.

* The QGP produced at RHIC (and soon at the LHC) appears to
be the most promising site for string theory to make contact with

the real world.

* A lot remains to be done. Some examples: we need to find the
string theory dual to QCD (might be very hard), refine our
descriptions, e.g., finite size and time dependent plasma, initial

stage, etc.



Final comment

| strongly recommend that you attend to:

» Samuel Vazquez’s talk: “On a consistent AdS/CFT description of
boost invariant plasma” (Monday afternoon)

» Alex Buchel’s talks: “Hydrodynamics in non-conformal gauge
theories” and “Conformal hydrodynamics beyond the
supergravity approximation” (Monday)

* José Edelstein’s talks: “The AdS/CFT correspondence and

non-perturbative QCD” and “Jet quenching in heavy ion collisions
from AdS/CFT” (Monday and Tuesday)

* Brian Wecht’s talk: “Compactification with torsion: moving
beyond Calabi-Yau” (Tuesday afternoon)



Thank you



