Heavy Quark Physics and CP Violation (II)

Jeffrey D. Richman

University of California, Santa Barbara

$$
\left[\begin{array}{l}
u
\end{array}\right]\left[\begin{array}{l}
c \\
s
\end{array}\right]\left[\begin{array}{l}
\\
b
\end{array}\right]
$$

XIII Mexican School of Particles and Fields Oct. 2-11, 2008

Outline

- Lecture 2
\& Thinking about symmetries; continuous vs. discrete
\leftrightarrow The three kinds of CP violation
\leftrightarrow Direct CP violation
\leftrightarrow BaBar detector: Tracking, Particle ID ($\pi /$ K separation)
\& Measuring lifetimes and oscillations (first look)
\leftrightarrow Silicon vertex detectors
\leftrightarrow Pitfalls of data analysis

Thinking about Symmetries

Symmetries are fundamental to understanding the forces of nature. We characterize interactions by the symmetries they possess.

In quantum mechanics, symmetries are nearly always represented by unitary transformations (U).

$$
\begin{aligned}
& |\psi\rangle \rightarrow\left|\psi^{\prime}\right\rangle=U|\psi\rangle \quad \text { U modifies the state vector } \\
& \left\langle\psi^{\prime} \mid \psi^{\prime}\right\rangle=\langle U \psi \mid U \psi\rangle=\langle\psi| U^{\dagger} U|\psi\rangle=\langle\psi \mid \psi\rangle \\
& {[U, H]=0 \quad \Rightarrow \quad U \text { is a symmetry of } H}
\end{aligned}
$$

If U is a symmetry, then

$$
H|\psi\rangle=i \hbar \frac{d}{d t}|\psi\rangle \Rightarrow H(\underbrace{U|\psi\rangle})=i \hbar \frac{d}{d t}(\underbrace{U|\psi\rangle})
$$

Solution to Schrodinger eq'n.
Also a solution to Sch. eq'n.

Continuous Symmetry Transformations

- Continuous symmetry transformations can be written as a function of a real parameter θ, which can be a vector of parameters.

$$
\begin{aligned}
U(\theta) & =e^{-i \cdot \theta \cdot G} \quad\left(\text { where } G^{\dagger}=G \text { since } U \text { is unitary }\right) \\
& \cong I-i \cdot \delta \theta \cdot G \quad \text { for small } \delta \theta
\end{aligned}
$$

"Generator" of the transformation: a QM observable!

- Example: the translation operator is

$$
U(\vec{x})=e^{-i \stackrel{\rightharpoonup}{P} \cdot \bar{x} / \hbar}=e^{-i\left(P_{x} x+P_{y} y+P_{z} z\right) / \hbar}
$$

Suppose: $[H, U(\vec{x})]=0$ for arb. \vec{X}

\Rightarrow translational invariance along \hat{x}

 $\Rightarrow[H, \vec{P} \cdot \hat{x}]=0 \quad$ then momentum will be conserved (additively); see next slide
Some consequences of symmetries

1. Conserved quantum numbers

$$
\begin{aligned}
0 & =\left\langle\psi_{b}\right|[H, G]\left|\psi_{a}\right\rangle=\left\langle\psi_{b}\right| H G-G H\left|\psi_{a}\right\rangle \\
& =\left(g_{b}-g_{a}\right)\left\langle\psi_{b}\right| H\left|\psi_{a}\right\rangle
\end{aligned}
$$

$$
\Rightarrow\left\{\begin{array}{lll}
& g_{b}=g_{a} & \text { (quantum number conserved) } \\
\text { or } & \left\langle\psi_{b}\right| H\left|\psi_{a}\right\rangle=0 & \text { (no transition) }
\end{array}\right.
$$

2. Relations between amplitudes

$$
\begin{aligned}
0 & =\langle\phi| U^{\dagger} H U-H|\psi\rangle=\langle U \phi| H|U \psi\rangle-\langle\phi| H|\psi\rangle \\
& \Rightarrow\langle U \phi| H|U \psi\rangle=\langle\phi| H|\psi\rangle \quad \begin{array}{l}
\text { Same amplitudes for these } \\
\text { transitions! }
\end{array}
\end{aligned}
$$

3. Existence of multiplets (states with same energies)

$$
[H, U]=0 \Rightarrow\langle U \psi| H|U \psi\rangle=\langle\psi| H|\psi\rangle
$$

Testing for Violation of Symmetries

1. Non-conserved quantum numbers

$$
\begin{aligned}
& B^{0} \rightarrow \pi^{+} \pi^{-} \\
& J^{P}=0^{-} \rightarrow \underbrace{0^{-} 0^{-}}_{\eta_{P}} \quad \text { Violates parity (weak decay). }
\end{aligned}
$$

2. Broken relationships between amplitudes

$$
\Gamma\left(B^{0} \rightarrow K^{+} \pi^{-}\right) \neq \Gamma\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)
$$

Violates CP

3. Masses of particles in multiplet not the same

$$
\binom{p}{n} \quad \begin{gathered}
m_{p}=938.27 \mathrm{MeV} / c^{2} \quad m_{n}=939.57 \mathrm{MeV} / c^{2} \\
\text { I-spin violation (quark masses, EM interaction) }
\end{gathered}
$$

Conservation laws from continuous symmetry transformations

$$
\begin{aligned}
& \left\langle\psi_{c}, \psi_{d}\right| H\left|\psi_{a}, \psi_{b}\right\rangle=\left\langle\psi_{c}, \psi_{d}\right| U^{\dagger} U H U^{\dagger} U\left|\psi_{a}, \psi_{b}\right\rangle \quad[U, H]=0 \\
& =\left\langle\psi_{c}, \psi_{d}\right| U^{\dagger} H U\left|\psi_{a}, \psi_{b}\right\rangle \\
& =\left\langle\psi_{c}, \psi_{d}\right| e^{+i \bar{P} \cdot \bar{x} / \hbar} H e^{-i \bar{P} \cdot \bar{x} / \hbar}\left|\psi_{a}, \psi_{b}\right\rangle \\
& =\left\langle\psi_{c}, \psi_{d}\right| H\left|\psi_{a}, \psi_{b}\right\rangle e^{+i\left[\left(\bar{p}_{c}+\bar{p}_{d}\right)-\left(\bar{p}_{a}+\bar{p}_{b}\right)\right] \cdot \bar{x} / \hbar} \\
& \Rightarrow\left\{\begin{array}{cl}
\vec{p}_{a}+\vec{p}_{b}=\vec{p}_{c}+\vec{p}_{d} & \begin{array}{l}
\text { Momentum is additively } \\
\text { conserved! }
\end{array} \\
\text { or }\left\langle\psi_{c}, \psi_{d}\right| H\left|\psi_{a}, \psi_{b}\right\rangle=0 & \text { (or else transition is } \\
& \text { not allowed) }
\end{array}\right.
\end{aligned}
$$

Conservation laws from discrete symmetry transformations

$$
\begin{aligned}
& \left|\psi_{a}\left(\eta_{a}\right)\right\rangle \longrightarrow\left|\psi_{c}\left(\eta_{c}\right)\right\rangle \\
& \left|\psi_{b}\left(\eta_{b}\right)\right\rangle \longrightarrow\left|\psi_{d}\left(\eta_{d}\right)\right\rangle
\end{aligned}
$$

C eigenstates for simplicity

$$
0=\left\langle\psi_{c}, \psi_{d}\right|[H, C]\left|\psi_{a}, \psi_{b}\right\rangle=\left\langle\psi_{c}, \psi_{d}\right| H \eta_{c} \eta_{d}-\eta_{a} \eta_{b} H\left|\psi_{a}, \psi_{b}\right\rangle
$$

$$
=\left(\eta_{c} \eta_{d}-\eta_{a} \eta_{b}\right)\left\langle\psi_{c}, \psi_{d}\right| H\left|\psi_{a}, \psi_{b}\right\rangle
$$

C is unitary \& hermitian
$\Rightarrow\left\{\begin{array}{l}\eta_{c} \eta_{d}=\eta_{a} \eta_{b} \\ \text { or }\left\langle\psi_{c}, \psi_{d}\right| H\left|\psi_{a}, \psi_{b}\right\rangle=0\end{array}\right.$ (discrete xf)

The C eigenvalue is multiplicatively conserved!

(or else transition is not allowed)

Three Kinds of CP Violation

We have seen that CP violation arises as an interference effect.

- Need at least two interfering amplitudes
- Need relative CP-violating phase
- Need relative CP-conserving phase

A single CP-violating amplitude by itself will not produce observable CP violation!

Classification of CP-violating effects in particle transitions

(based on the sources of amplitudes that are present).

1. CP violation in oscillations ("indirect CP violation")
2. CP violation in decay ("direct CP violation")
3. CP violation in the interference between mixing and decay

Direct CP violation: interfering decay amplitudes

$$
\operatorname{Amp}(P \rightarrow f) \quad \operatorname{Amp}(\bar{P} \rightarrow \bar{f})
$$

Direct CP violation seems the most straight-forward: it doesn't involve mixing to generate one of the amplitudes.

- Can occur in decays of both neutral \& charged particles
- But the CP-conserving phases are from strong (QCD) interactions between the mesons ("final-state interactions"). These strong phases cannot be predicted reliably.

CP Violation in oscillations

$\operatorname{Amp}\left(\bar{P}^{0} \rightarrow P^{0}\right)$

$\operatorname{Amp}\left(P^{0} \rightarrow \bar{P}^{0}\right)$
$M_{12}=$ transition amplitude via intermediate states that are virtual (off-shell)
$\Gamma_{12}=$ transition amplitude via intermediate states are are real (on-shell: both P^{0} and \bar{P}^{0} can decay into these!)

- The " -1 " is a CP conserving phase factor. It doesn't change sign!
- M_{12} and Γ_{12} behave like CP-violating phase factors, as long as they are not relatively real.

Time-dependent CP asymmetries from the interference between mixing and decay amplitudes

By modifying the mixing measurement, we can observe whole new class of CP-violating phenomena: pick final states that both B^{0} and \bar{B}^{0} can decay into. (Often a CP eigenstate, but doesn't have to be.)

$$
\Gamma\left(B_{p h y s}^{0}(t) \rightarrow f_{C P}\right)
$$

$\Gamma\left(\bar{B}_{\text {phys }}^{0}(t) \rightarrow f_{C P}\right)$

Preview: the strange behavior of $B^{0} \rightarrow \mathrm{~J} / \psi \mathrm{K}_{\mathrm{s}}$

Conjugate amplitudes and direct CP violation

What is the relation between an amplitude and its conjugate?

$$
\begin{aligned}
& C P|P\rangle=e^{i \theta(P)}|\bar{P}\rangle \\
& C P|\bar{P}\rangle=e^{-i \theta(P)}|P\rangle \\
& (C P)^{2}|P\rangle=|P\rangle
\end{aligned}
$$

Often, people choose a specific phase convention. I like to keep the non-physical CP phase explicit.

$$
\begin{aligned}
A & =\langle f| H|P\rangle=\langle f|(C P)^{\dagger}(C P) H(C P)^{\dagger}(C P)|P\rangle \\
& =\langle\bar{f}|(C P) H(C P)^{\dagger}|\bar{P}\rangle e^{i[\theta(P)-\theta(f)]} \\
& =\langle\bar{f}| H|\bar{P}\rangle e^{i[\theta(P)-\theta(f)]} \\
& =\bar{A} e^{i[\theta(P)-\theta(f)]} \quad \Rightarrow\left|\frac{\bar{A}}{A}\right|=1 \quad \text { if CP conserved }
\end{aligned}
$$

Amplitude analysis for direct CP violation

$$
\begin{aligned}
& A=\left|A_{1}\right| e^{i\left(\varphi_{1}+\delta_{1}\right)}+\left|A_{2}\right| e^{i\left(\varphi_{2}+\delta_{2}\right)} \\
& \bar{A}=\left(\left|A_{1}\right| e^{i\left(-\varphi_{1}+\delta_{1}\right)}+\left|A_{2}\right| e^{i\left(-\varphi_{2}+\delta_{2}\right)}\right) e^{-i[\theta(P)-\theta(f)]}
\end{aligned}
$$

$$
\text { Asymmetry }=\frac{|\bar{A}|^{2}-|A|^{2}}{|\bar{A}|^{2}+|A|^{2}}=\frac{2 \sin \left(\varphi_{1}-\varphi_{2}\right) \sin \left(\delta_{1}-\delta_{2}\right)}{\left|\frac{A_{2}}{A_{1}}\right|+\left|\frac{A_{1}}{A_{2}}\right|+\cos \left(\varphi_{1}-\varphi_{2}\right) \cos \left(\delta_{1}-\delta_{2}\right)}
$$

Problems with interpreting measurements of direct CP asymmetries:

1. we often don't know the difference $\delta_{1}-\delta_{2}$, so we cannot extract $\phi_{1}-\phi_{2}$ from the asymmetry.
2. we often don't know the relative magnitude of the interfering amps.

Direct CP violation in $B \rightarrow K^{-} \pi^{+}$

Interference between tree and penguin amplitudes produces a CP asymmetry in $B \rightarrow K^{-} \pi^{+}$. Both processes are suppressed!

External spectator
Gluonic penguin

In the Wolfenstein convention, the CP-violating phase factor comes from $V_{u b} \propto e^{-i \gamma}$.

Identifying B signals at the $\mathrm{Y}(4 \mathrm{~S})$

Suppose that you have a large collection of events, say 300 M.
How do you identify and measure a specific B decay process?

Beam energy-substituted mass Energy difference Event shape

$$
m_{E S}=\sqrt{E_{\text {beam }}^{* 2}-\left|\vec{p}_{B}^{*}\right|^{2}} \quad \Delta E=E_{B}^{*}-E_{\text {beam }}^{*}
$$

"Direct" $C P$ violation in $B^{0} \rightarrow K^{+} \pi^{-}$vs. $\bar{B}^{0} \rightarrow K^{-} \pi^{+}$

"Direct" $C P$ violation in $B^{0} \rightarrow K^{+} \pi^{-}$vs. $B^{0} \rightarrow K^{-} \pi^{+}$(update)

$$
\mathcal{A}_{K \pi}=-0.107 \pm 0.016_{-0.004}^{+0.006}
$$

CP violation and aliens from outer space

We can use our knowledge of CP violation to determine whether alien civilizations are made of matter or antimatter without having to touch them.

$$
\begin{aligned}
& A_{C P}= \frac{\Gamma\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)-\Gamma\left(B^{0} \rightarrow K^{+} \pi^{-}\right)}{\Gamma\left(\bar{B}^{0} \rightarrow K^{-} \pi^{+}\right)+\Gamma\left(B^{0} \rightarrow K^{+} \pi^{-}\right)} \\
& b \bar{d}-13 \% \\
& \text { We have these inside of us. } \quad K^{-}=\bar{u} s \\
&=\bar{u} d
\end{aligned}
$$

Finally: a practical application for particle physics!

Is the difference between matter and antimatter merely one of convention, or is there a difference in their behavior?

$$
\text { CPT symmetry guarantees }\left\{\begin{array}{l}
m(a)=m(\bar{a}) \\
\Gamma(a)=\Gamma(\bar{a}) \\
\tau(a)=\tau(\bar{a})
\end{array}\right.
$$

C violation by itself does not truly distinguish between matter and antimatter, because a parity flip would restore equality:

$$
\sum_{\substack{\text { linill-state }}} \Gamma\left(\mu^{-} \rightarrow e^{-} \bar{v}_{e} v_{\mu}\right)=\sum_{\substack{\text { all fini-lsate } \\ \text { helicitites }}} \Gamma\left(\mu^{+} \rightarrow e^{+} v_{e} \bar{v}_{\mu}\right)
$$

We want to observe a true decay-rate difference!

$$
\underbrace{\Gamma_{i}\left(a \rightarrow f_{i}\right)}_{\text {rate (process) }} \neq \underbrace{\Gamma_{i}\left(\bar{a} \rightarrow \bar{f}_{i}\right)}_{\text {rate (anti-process) }} \quad\} \begin{aligned}
& \mathrm{C} \text { and } \mathrm{CP} \\
& \text { violation }
\end{aligned}
$$

BABAR Detector

Thinking about charged particle momentum measurement

A detector is a solution to a set of problems.

- High B-field \rightarrow better momentum resolution but also causes trajectories of low-p to curl up!

$$
p_{\perp}(\mathrm{GeV} / c)=0.3 \cdot B(T) \cdot \rho(\mathrm{m})
$$

$$
\frac{\delta p_{\perp}}{p_{\perp}} \propto \frac{\varepsilon L^{2}}{B}
$$

- Large radius \rightarrow better momentum resolution, ε is point resolution but increases cost of detector systems outside the drift chamber, especially expensive CsI crystals for photon detection.
- Material: want to minimize multiple-Coulomb$\begin{aligned} & \text { scattering } \rightarrow \text { use low-mass gas (He/isobutane) }, \\ & \text { but get less ionization/track }\end{aligned} \theta_{\text {mes }} \approx \frac{0.014}{p(\operatorname{GeV} / c) \beta} \sqrt{\frac{x}{X_{0}}}$

BABAR Drift Chamber

- 40 layers of wires (7104 cells) in 1.5 Tesla magnetic field
- Helium:Isobutane 80:20 gas, Al field wires, Beryllium inner wall, and all readout electronics mounted on rear endplate
- Particle identification from ionization loss (7\% resolution)

Charged hadron particle identification in $B \rightarrow K \pi$

Particle ID is based on the idea of measuring particle velocity.

Tracker in B field: measures p particle ID device measures v
Primary methods:

- time-of-flight over known distance (fast organic scintillator)
- dE/dx (Bethe-Bloch formula)
- Cherenkov radiation

BABAR DIRC

Charged K / π separation using the BABAR DIRC

$4 \times 1.225 \mathrm{~m}$
Synthetic Fused Silica
Bars glued end-to-end

Num. r.l. $=0.19 \mathrm{X}_{0}$
$\sigma\left(\theta_{\mathrm{C}}\right)=3 \mathrm{mrad}$

Number of Cherenkov photons $=20-60$

BaBar DIRC quartz bar

Comparing Hits with Cherenkov Signature

Measuring velocity from $\mathrm{dE} / \mathrm{dx}$

A closer look at oscillations

A single, general formalism based on time-dependent perturbation theory describes meson oscillations in K, D, B, and B_{s} systems.

$$
\left.\begin{array}{l}
K^{0} \bar{K}^{0} \\
D^{0} \bar{D}^{0} \\
B^{0} \bar{B}^{0} \\
B_{s}^{0} \bar{B}_{s}^{0}
\end{array}\right\}
$$

Key point: since the weak interactions induce transitions between P^{0} and $\overline{P^{0}}$, these flavor-eigenstate particles are not eigenstates of the total Hamiltonian, and they do not have definite masses or lifetimes. (They are superpositions of states P_{L} and P_{H} that do. Want to calculate $\Delta \mathrm{m}$ and $\Delta \Gamma$!)

Discovery of $B^{0} \bar{B}^{0}$ Oscillations

ARGUS experiment (1987)

$$
\begin{aligned}
& \Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0} \rightarrow B_{1}^{0} B_{2}^{0} \\
& B_{1}^{0} \rightarrow D_{1}^{*-} \mu_{1}^{+} v_{1}, D_{1}^{*-} \rightarrow D^{0} \pi_{1}^{-} \\
& B_{2}^{0} \rightarrow D_{2}^{*-} \mu_{2}^{+} v_{2}, D_{1}^{*-} \rightarrow D^{-} \pi^{0}
\end{aligned}
$$

$103 \mathrm{pb}^{-1} \sim 110,000$ B pairs

$$
\chi_{d}=0.17 \pm 0.05
$$

ARGUS, PL B 192, 245 (1987)
Time-integrated mixing rate: 21%
(fig. courtesy D. MacFarlane)

Time-dependent oscillation measurement

$$
\begin{aligned}
& B^{0}=\bar{b} d \\
& \overline{B^{0}}=b \bar{d}
\end{aligned}
$$

Innermost Detector Subsystem: Silicon Vertex Tracker

BaBar Silicon Vertex Tracker (SVT)

Measurement of Decay Time Distributions

$$
\tau\left(B^{0}\right)=[1.546 \pm 0.032(\text { stat }) \pm 0.022(\mathrm{sys})] \mathrm{ps} \quad \tau\left(D^{0}\right) \simeq 0.41 \mathrm{ps}
$$

$$
\tau\left(B^{+}\right)=[1.673 \pm 0.032(\text { stat }) \pm 0.022(\mathrm{sys})] \mathrm{ps} \quad \tau\left(D^{+}\right) \simeq 1.04 \mathrm{ps}
$$

$$
\frac{\tau\left(B^{+}\right)}{\tau\left(B^{0}\right)}=1.082 \pm 0.026(\text { stat }) \pm 0.011(\mathrm{sys}) \quad \frac{\tau\left(D^{+}\right)}{\tau\left(D^{0}\right)} \simeq 2.5
$$

$$
B^{0} \text { decay time }
$$

distribution

Measuring the $B^{0} \bar{B}^{0}$ oscillation frequency

$$
\begin{aligned}
& \left(\frac{d N}{d t}\right)_{\text {nomix }}={\frac{1}{4 \tau_{B}} \cdot e^{-\Gamma t} \cdot\left[1+\cos \left(\Delta m_{d} \cdot t\right)\right]}_{\left(\frac{d N}{d t}\right)_{\text {mix }}=\frac{1}{4 \tau_{B}} \cdot e^{-\Gamma t} \cdot\left[1-\cos \left(\Delta m_{d} \cdot t\right)\right]}^{\Rightarrow \mathrm{A}_{\text {mix }}=\frac{\left(\frac{d N}{d t}\right)_{\text {nomix }}-\left(\frac{d N}{d t}\right)_{\text {mix }}}{\left(\frac{d N}{d t}\right)_{\text {nomix }}+\left(\frac{d N}{d t}\right)_{\text {mix }}}=\cos (\Delta m \cdot t)} \text { amplitude }=1
\end{aligned}
$$

How do you actually do this measurement? Basic question: did the B oscillate or not? Need to know this as a function of time!

1. When it was produced, was the meson a B^{0} or $\overline{B^{0}}$?
2. When it decayed, was the meson a B^{0} or a $\overline{B^{0}}$?
3. What is the time difference between production and decay?

Mixing asymmetry vs. $\Delta \mathrm{t}$

Does a mass really have units of s^{-1} ?

$$
\mathrm{A}_{\text {mix }}=\cos (\Delta m \cdot t)
$$

1. Put in c^{2}
$(\Delta m) c^{2} \cdot t \sim E T$
2. Divide by $\hbar \sim E T$ since phase must be dimensionless
$\frac{(\Delta m) c^{2} \cdot t}{\hbar} \sim$ dimensionless!
$\frac{(\Delta m) c^{2}}{\hbar}=0.5 \mathrm{ps}^{-1} \quad B^{0} \bar{B}^{0}$
$(\Delta m) c^{2}=\left(0.5 \cdot 10^{12} \mathrm{~s}^{-1}\right) \cdot\left(66 \cdot 10^{6} \mathrm{eV} \cdot 10^{-23} \mathrm{~s}\right) \approx 3 \cdot 10^{-4} \mathrm{eV}$
Explains why we don't worry about B_{H} and B_{L} in most analyses!

Oscillations in the $K^{0} \overline{K^{0}}$ System

Most striking feature of $K^{0} \bar{K}^{0}$ system: huge lifetime splitting between mass eigenstates. (This is quite different from the $B^{0} \overline{B^{0}}$ system, where the mass splitting is very small!)

$$
\begin{aligned}
& \left.\begin{array}{rl}
\frac{\tau\left(K_{S}^{0}\right)}{\tau\left(K_{L}^{0}\right)} & \simeq 52 \mathrm{~ns} \\
0.09 \mathrm{~ns} & \left.\frac{15.5 \mathrm{~m}}{2.7 \mathrm{~cm}}\right\}
\end{array}\right\} \begin{array}{l}
\underline{\text { Major experimental implication }} \\
\quad \simeq 580 \\
\text { a neutral } K \text { beam evolves over } \\
\text { distance into a nearly pure } K_{\mathrm{L}}{ }^{0} \\
\text { beam. }
\end{array} \\
& \begin{aligned}
\Delta \Gamma= & \Gamma\left(K_{L}^{0}\right)-\Gamma\left(K_{S}^{0}\right) \simeq-\Gamma\left(K_{S}^{0}\right) \simeq-10^{-10} \mathrm{~s}^{-1}
\end{aligned} \\
& \begin{aligned}
\Delta M & =M\left(K_{L}^{0}\right)-M\left(K_{S}^{0}\right)=(0.5304 \pm 0.0014) \times 10^{10} \mathrm{~s}^{-1} \\
\quad & \simeq 3.5 \times 10^{-6} \mathrm{eV}
\end{aligned}
\end{aligned}
$$

$\Delta \Gamma \approx-2 \Delta M$
The mass and lifetime splittings are comparable!

CP Violation in mixing: observation of $K_{L} \rightarrow \pi^{+} \pi^{-}$

Exploit the large lifetime difference between the two neutral K mass eigenstates.

Demonstrates that $K_{\mathrm{L}}{ }^{0}$ decays into both $\mathrm{CP}=-1$ (usually) and $\mathrm{CP}=+1$ final states $\rightarrow K_{\mathrm{L}}{ }^{0}$ is not a CP eigenstate.

$$
\eta_{+-} \equiv \frac{A\left(K_{L}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{A\left(K_{S}^{0} \rightarrow \pi^{+} \pi^{-}\right)} \quad \eta_{00} \equiv \frac{A\left(K_{L}^{0} \rightarrow \pi^{0} \pi^{0}\right)}{A\left(K_{S}^{0} \rightarrow \pi^{0} \pi^{0}\right)} \quad \begin{aligned}
& \text { both are } \\
& 2 \times 10^{-3}
\end{aligned}
$$

Key point: K_{L} beam is "self-tagging." (Tagging = method in which we identify a particle P_{1} by studying a particle P_{2} that is produced in association with particle P_{1}.)

Pitfalls of data analysis

- Historically, there are many examples where measurements have been affected by biases in the data analysis.
- How can this happen?
\Leftrightarrow If the person performing the analysis is happier getting a result that is similar to (or different from) a previous result, this can bias the measurement.
\& If the person performing the analysis wants to get as big a signal as possible and tunes cuts using the data, this can bias the measurement.
\leftrightarrow If the person performing the analysis believes that a certain answer must be true, this can bias the measurement. (For example, they might discard data that disagrees with the result they want!)

Embarrassing moments in particle physics

1. "Discovery" of the $\zeta(8.1)$ —Crystal Ball expt. (1984)

- Observation of peaks in photonenergy spectrum in two independent decay channels.
- Not confirmed in subsequent data sample
- Only presented at conferences; not published

2. "Discovery" of top quark - UA1 experiment (1984)

- Observation of $6^{\text {th }}$ quark (top) incorrectly inferred from CERN experiment
- top quark finally discovered at Fermilab at much higher mass

3. "Discovery" of penta-quark states (2002-2004)

- remarkable bandwagon effect (next slide)

Slide courtesy of Reinhard Schumacher Pentaquark Exp'ts Timeline

Some common problems

- People often stop looking for mistakes when they obtain a desirable result.
- Background shape or normalization estimated incorrectly.
- Backgrounds peaking under signal not correctly determined.
- Signal significance estimated incorrectly.
- Signal is created artificially as "reflection" of another signal.
- Errors determined incorrectly.
- Correlations not taken into account.
- Shapes used in fit are not adequate to describe the data.
- Bugs in program.
- Systematic errors underestimated.
- Systematic errors incomplete.
- Unstated/incorrect assumptions.
- Changes in experimental conditions not fully taken into account.
- Average of many bad measurements might not give a good measurement.
"Evidence for a Narrow Massive State in the Radiative Decays of the Upsilon"-Crystal Ball Collaboration (summer 1984)

Crystal Ball claimed evidence for the decay

$$
Y(1 S) \rightarrow \gamma X
$$

Monochromatic photon corresponds to two-body decay to a new particle:

$$
\begin{gathered}
X=\zeta(8.3) \\
M(\zeta)=(8322 \pm 8 \pm 24) \mathrm{MeV} / c^{2}
\end{gathered}
$$

Completely absent in subsequent data sample!

Blind Analysis

- Basic principle: it's OK to be stupid. It's not OK to be biased!
- Translation: if an analysis isn't perfectly optimized, it's OK. But it's not OK to perform an analysis that will give a non-reproducible result when more data are obtained.
- All studies are performed in such a way as to hide information on the value of the final answer.
- Avoids any subconscious experimenter bias
$>$ e.g. agreement with the Standard Model!
- Not needed for certain kinds of "easy" analyses.

Blind analysis technique

- Adopted by BaBar for most analyses and is gradually becoming more common in HEP. (Developed by kaon expts.)
- Main idea: develop event selection using Monte Carlo samples or data control samples that will not be used to extract the signal yield.

Advantages

- Leads to much more structured \& organized analysis procedures
- Focus is on sources of uncertainty rather than on the central value
- Optimization of evt. selection is independent of actual signal
- Avoids many kinds of bias
- Increased credibility

Disadvantages

- Usually delays looking at data
- Usually slows things down
- May discover important effect late in the analysis
- Analysis may be optimized based on unrealistic MC
- Requires a lot of discipline!

An unblinding party in BaBar

End of Lecture 2

Backup Slides

Some early discoveries in symmetry breaking

There has been a long history of discovering and understanding symmetry breaking in the weak interactions.

- $\tau-\theta$ puzzle: P-violation in K decay
T.D. Lee and C.N. Yang Nobel prize (1957)

$$
\begin{aligned}
& K^{+}\left(" \tau^{+} "\right) \rightarrow \pi^{+} \pi^{+} \pi^{-} \\
& K^{+}\left(" \theta^{+} "\right) \rightarrow \pi^{+} \pi^{-}
\end{aligned}
$$

- P-violation in β-decay of polarized ${ }^{60} \mathrm{Co}$ nuclei: C.S. Wu

$$
{ }^{60} \mathrm{Co} \rightarrow{ }^{60} \mathrm{Ni}+e^{-}+\bar{v}
$$

Steps in a typical BaBar blind data analysis

Steps in a typical BaBar blind data analysis (II)

Optimization of analysis sensitivity (iterative).

- Optimize $S / \sqrt{S+B}$ or $S / \sqrt{S+B}$
- Which variables are most reliable? Simplify to reduce systematic uncertainties.
- Which variables to fit?
- Select variables not to use in selection or fit but as key properties of signal.
- Blind analysis: neither signal nor background estimates in optimization use data that will be used for actual result. Validate samples used for optimization with control samples in data.

Develop fitting procedure

- Investigate correlations between variables used in fit
- Validation of fitter ("toy" MC samples)

Steps in a typical BaBar blind data analysis (III)

Investigate systematic uncertainties

- Multiplicative (\% of central value, e.g., tracking efficiency)
- Additive (due to uncertainties in shapes used in fit)
- Parameters can be added to the fit to transfer some systematic uncertainties to statistical uncertainties!

Internal review

- Requires detailed documentation
- After unblinding for simple analysis
- Before unblinding for complicated analysis

\downarrow

Unblinding "party" (usually very late at night)
Fitting; goodness of fit? Check extra distribs. Make "s-plots"
Final systematic errors
Final internal documentation, formal review process. Paper!

