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The parton distribution functions give us a very simple model 
for the cross section for hard-scattering events in proton-proton 
collisions.  Take a parton from each proton, and fold the 
distributions with the cross sections computed in perturbative 
QCD:

(or, invariantly, integrate over                                     )
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σ(pp→ ab + X) =∫
dξ1dξ2

∑

f1,f2

ff1(ξ1)ff2(ξ2)
∫

d cos θ∗
dσ

d cos θ∗
(f1f2 → ab)

(1)
t = −1

2
s(1− cos θ∗)

s = ξ1ξ2 s(pp) s = x1x2 s(pp)



σ(qfqf → µ+µ−) =
4πα2

3s
· 1
3
Q2

f

σ(ud→W+) =
π2αw

3
δ(s−m2

W )

σ(ud→ Z0) =
2π2αw

3c2
w

[(
1
2
− |Qf |s2

w)2 + (Qfs2
w)2]δ(s−m2

Z)

The simplest parton-parton cross sections are those for lepton 
pair production from a quark and an antiquark.

Drell-Yan process:

At high energy, the weak interaction resonances are important.  
Here are the resonant contributions:
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Anastasiou, Dixon, Melnikov, Petriello
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We can apply the same logic to parton-parton hard scattering 
reactions.

For quark-quark and -antiquark scattering, the cross sections are 
very similar to the cross sections for electron-quark scattering 
discussed yesterday.
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Quark-gluon and gluon-gluon reactions bring in new cross 
sections.  I will derive some of these tomorrow.

(For identical particles in the final state, integrate over only 
half of      .)
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A much clearer visualization of the event is given by using variables 
that emphasize the momentum structure transverse to the initial 
beam directions.

rapidity:

 transverse-moving particle:

 general particle:  

pseudo-rapidity: 

Use the same formulae with the assumption of zero mass.  Then 
there is a direct relation between the rapidity variable and polar 
angle.

The plot of         over the plane of           is called the ‘Lego plot’.

(θ, φ, p)→ (η, φ, pT )

(mT cosh y, !pT , mT sinh y)
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Look more closely at the event pictures in the Lego plot.

How do we define a jet ?   In particular,

     Which pieces of the transverse momentum distribution
         are assigned to each jet ? 

     What is the internal structure of a jet ?

      How many jets are there in a given event ? 
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The simplest version of this question appears in e+e- 
annihilation.  We saw that the probability of gluon 
emission goes to 1 as we consider more collinear or 
softer gluons.

At what point do we cross over from a ‘2-jet event’ to 
a ‘3-jet event’ ?

We can approach this problem in two ways, using a 
‘jet observable’ or a ‘jet algorithm’.



A ‘jet observable’ gives a quantitative answer to the question, 
to what extent is the momentum flow of the event collimated 
along a given axis ?

Sphericity:

so that S = 1 for a spherical event, S = 0 for a fully collinear 
event.

Thrust:  

so that T = 1/3 for a spherical event,  T = 1 for a fully collinear 
event.

T has the advantage over S in being ‘infrared-safe’.  The 
splitting of a quark to a collinear quark-gluon pair changes S 
but does not change T. 
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Compute T to 

                                 gives    T = 1

                                  gives   T = 

 T= 2/3       for a symmetric (planar) configuration.

O(αs)

e+e− → qq

max(xq, xq, xg)e+e− → qqg



dσ

dT
= σ0 · 2αs

3π
·
∫ xq

2(1−xq)
dxq

x2
q + x2

q

(1− xq)(1− xq)

∣∣∣∣
xq=T

= σ0 · 2αs

3π
·
{

2(3T 2 − 3T + 2)
T (1− T )

log
2T − 1
1− T

− 3(3T − 2)(2− T )
(1− T )

}

Here is the explicit result.  It diverges as             , and it cuts off 
as                 .

At higher orders, we can go beyond  T = 2/3.  Nonperturbative 
corrections are also needed to fit the thrust data as a function of 
CM energy.

T → 1
T → 2/3



τ = 1- T





NLO QCD 
calculation by 
Zoltan Nagy



An alternative way to study the jettiness of events is to use a 
‘jet algorithm’.  In this approach, we start from the particles 
observed in the event and attempt to combine them into 
clusters.  At some point, we will stop, and the clusters at this 
stage are defined to be the jets.

In a theory calculation, we combine partons.  In a real 
experiment, we might combine energies associated with signals 
in a detector, e.g. energies in calorimeter towers.

A simple algorithm is the JADE algorithm:  Compute the invariant 
mass of each pair of particles.  Find the two particles with the 
smallest invariant mass, and combine these to a single particle. 
Continue until the next step gives an invariant mass

m2
ij > ycuts



Altarelli-Parisi evolution generates structure for each jet.

Collinear quarks and gluons are radiated at every mass scale.  
The radiations are distributed on a log scale in Q or in 

So a jet is a fractal.  For fixed       its structure is predicted to 
be scale-invariant.  The running of       predicts more structure 
at smaller mass scales or larger angles.

αs
αs



To predict the structure of a jet, we need to simulate the quark 
and gluon emissions: 

Begin with a simple process with 2 particles in the final state, 
e.g.,                      .

For each outgoing parton, step from                to                   . 
At each step, emit a quark or gluon with the probability given 
by the Altarelli-Parisi equation.  (This is specific for collinear 
emissions; generalize this, somehow, for wide-angle emissions.)

If there are hadrons in the initial state, the initial partons also 
undergo radiation from parton evolution.

At the end of the process, use a phenomenological model to 
turn the quarks and gluons into hadrons.

The event simulation programs  PYTHIA, HERWIG, SHERPA  carry 
out this program, using somewhat different implementations.

e+e− → qq

Q =
√

s Q ∼ GeV



Here is a comparison of the Monte Carlo simulations to data, 
showing the dependence on the hadronization algorithm and on 
the QCD parameters used.





In proton-proton collisions, it is not so easy to define an 
effective variable to cluster particles into jets.

Detectors cover only a limited angular region, excluding the very 
forward directions.

The disruption of the two protons creates a large number of 
particles at low      , distributed across the range of rapidity.  
This particles from this ‘underlying event’ should not be 
included in the momentum of the jet.

pT



Two commonly used approaches to clustering are

    cone jets:

define a jet to be the particles or energies inside a cone of fixed 
angular size R, where

A common choice is R = 0.7.  Propose cone locations, and move 
these in             to maximize the tranverse momentum contained 
in the cones.

              jets:

Combine pairs of particles or energies with the minimum value of  
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from Campbell-Houston-Stirling        for R = 0.7



Peter Loch will discuss these methods in much more detail.

I would just like here to give some evidence that QCD does 
successfully describe the distribution of energy inside jets.

The variable used in the next plots is      (0 < r < 1) 

ψ(r) =
∑

pT ( cone size rR)∑
pT ( cone size R)



data: CDF

theory:
S. Ellis, Kunszt, 

and Soper
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There are two final issues that I would like to discuss.

First, it is not quite correct that we can model parton evolution 
as an independent process for each parton. 

For radiation from a color-singlet       dipole, depending on the 
orientation, we may have 

    constructive interference:

    destructive interference:  

This effect actually shows up in the data as a modulation of 
particle production.

qq



JADE

29-36 GeV



This color coherence is implemented in PYTHIA and HERWIG 
by enforcing angular ordering of the successive emissions in 
the parton shower.



Second, for many purposes, a simple parton shower is not a 
sufficiently accurate representation of the final state.

When we search for new particles at the LHC, we will be 
interested in events with leptons or missing energy + 4 jets,
all at large angles to one another.  We will want to know the 
Standard Model rates for such events.

PYTHIA and HERWIG are not designed to estimate the rates for 
such events correctly.  To do this, we need full QCD matrix 
elements for the multijet processes.

I will discuss next time how to calculate these matrix elements. 
There is also the problem of integrating the results into event 
generation without double-counting of parton emissions.

Several codes now compute such matrix elements and generate 
events, matching the matrix element generation to parton 
showers.



predictions of the ET spectrum in  W+ jets at the LHC for the 4 
hardest jets,  from J. Alwall et al.  arXiv:0706.2569



Some very interesting ideas arise in the computation of 
multi-parton matrix elements.  I will discuss these in 
the next lecture.


