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Abstract. In this work we present a multiparametric technique that attempts to tackle simultane-
ously the problems of composition determination and hadronic interaction uncertainty. This tech-
nique allows to test the compatibility between hadronic interaction models with real data. When the
data results compatible with the hadronic interaction models considered, it also allows to determine
the composition of a binary mixture of proton and iron nuclei very precisely and in a way that is
independent of the assumed hadronic interaction models.
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INTRODUCTION

The hadronic interactions at the highest energies are unknown. There are models that
extrapolate the low energy data to higher energies in order to describe such interactions.
The determination of the composition of the high energy cosmic rays is performed
comparing the experimental data with simulations and, therefore, the main systematic
uncertainty of such analyses comes from the hadronic interaction models assumed.

In this work we present a statistical method to test the compatibility of the high en-
ergy hadronic interaction models and real data [1]. We consider the hadronic interaction
models QGSJET-II [2, 3] and Sibyll 2.1 [4], which are two of the most used for composi-
tion analyses. Our method allows to verify whether the experimental data is compatible
with the hadronic models under consideration and, if so, to estimate the composition.
We center our study in the region of the ankle, where composition carries critical astro-
physical information [5], and use the two most important mass sensitive parameters: the
number of muons at 600 m from the shower axis, Nµ(600), and the depth of the shower
maximum, Xmax.

COMPOSITION TECHNIQUE

Let us consider two possible types of primaries, A = a,b, and samples of size N =
Na + Nb, where Na and Nb are the number of events corresponding to type a and b,
respectively. From each event of an individual sample it is possible to extract several ob-
servable parameters sensitive to the primary mass. Therefore, for a given mass sensitive



parameter q we define,
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N

N
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]
, (1)

where qA
i are NA random variables distributed as fA(q) and Pa(q) = fa(q)/( fa(q) +

fb(q)), which is the probability that an event is of type a for a given q, assuming no
prior knowledge of the primary type. The new statistic, so defined, is an estimator of
the abundance of the primary of type a. Note that we restrict our analysis to the case in
which the cosmic rays are the superposition of two components.

It can be shown that 〈ξq〉(ca) = m ca + d, where ca = Na/N is the composition or
the abundance of the primary a, m =

∫
dqPa(q)( fa(q)− fb(q)), and d =

∫
dqPa(q) fb(q).

Therefore, 〈ξq〉 depends linearly on the composition.
Another important property of ξq is that the variance is also proportional to ca and

inversely proportional to the sample size: Var[ξq](ca) = [ca
(
σ2

a [Pa(q)]−σ2
b [Pa(q)]

)
+

σ2
b [Pa(q)]]/N, where σ2

A[Pa(q)] =
∫

dqP2
a (q) fA(q)− (

∫
dqPa(q) fA(q))2. Note that ξq is

the sum of N random variables, therefore, for large enough values of N, it is distributed
as a Gaussian variable.

The two parameters, Nµ(600) and Xmax, will be available for the enhancements of the
Pierre Auger Observatory AMIGA [6] and HEAT [7] as well as for Telescope Array and
its low energy extensions [8]. However, we center here in the enhancements of the Pierre
Auger Observatory. The development of the technique is performed from simulations.
The simulation of the air showers is done by using the AIRES package version 2.8.2 [9]
and the simulation of the detectors of AMIGA and HEAT is done following Ref. [10].
A power law energy spectrum, of spectral index γ = −2.7, is considered and all the
analyses are performed for a primary energy of E = 1018 eV assuming a 25% Gaussian
uncertainty on its determination.

In order to calculate ξq (see Eq. (1)), we need the distribution functions, fA(q), of the
different parameters sensitive to the primary mass considered, including the effects of
the detectors and reconstruction methods. For that purpose, non-parametric method of
kernel superposition [11] are used as an estimate of these probability density functions
obtained from the simulated data (see Ref. [1] for details of the calculations).

Samples of N = 100 and N = 1000 events are considered, which are the number of
hybrid events in the energy interval considered, expected for the 750 m-array in 2 and
20 years of data taking.

As mentioned above, the distribution functions of the variables ξq1 and ξq2 are Gaus-
sian. The mean value and the covariance matrix depend on the proton abundance of
the samples and therefore so will the ellipses that enclose regions of a given value of
probability. Fig. 1 shows the ellipses corresponding to 68% and 95% probability for the
parameters ξµ and ξXmax for our case study: θ = 30◦, N = 100 and N = 1000 events,
for samples built using QGSJET-II and Sibyll 2.1. As mentioned, we consider proton
and iron primaries and then, cp, refers to the proton abundance. The evolution of the
abundance on the ξµ −ξXmax plane, and the shape and size of the associated ellipses, al-
low for a smooth estimation of the composition in a way that is reasonably independent
of the assumed hadronic interaction model. Furthermore, given two possible interaction
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FIGURE 1. Ellipses corresponding to 68% and 95% probability for the Gaussian distributions of the
parameters ξµ and ξXmax for cp ∈ [0,1], θ = 30◦, N = 100 (left panel) and N = 1000 (right panel) events
and for samples corresponding to QGSJET-II and Sibyll 2.1.

models and an observed data set, a figure like the ones depicted in Fig. 1 can be used to
assess the compatibility of these models and the experimental data. In order to clarify
this point, the diagram in Fig. 2 shows a schematic view of the distributions correspond-
ing to two hadronic interaction models, A and B. Since both ξ1 and ξ2 mean values
are linearly dependent on cp, the variation of the latter in the ξ1− ξ2 plane is linear, as
shown in the diagram. It is possible to approximate “composition isolines” originated
by possible hadronic interaction models between A and B by straight lines that link the
same values of composition corresponding to the two different models. These curves
can be used to infer the real abundance, i.e. given a data sample we can attempt to obtain
the real abundance independently of the hadronic interactions model by just finding the
composition isoline which passes through the data point.

The statistical uncertainty on the determination of cp is of the order of the size of
the ellipses with dimensions according to the requested confidence level. Therefore, an
estimation of the uncertainty over a composition isoline would be extracted from such
an ellipse, namely at the crossing with the real abundance straight line.

Having an experimental sample, we can obtain a point on the ξµ−ξXmax plane by using
the density estimates obtained from simulations. As an example, let us consider the left
panel of Fig. 1 and the experimental point P = (0.32,0.26). For this particular example,
one can immediately tell form the position of the point with respect to the curves that
the data is compatible with QGSJET-II and that the composition is, approximately, in
the interval [0,0.05] at 68% confidence level. If, on the other hand, one considers a point
like R = (0.65,0.65) it is not possible to discriminate between QGSJET-II and Sibyll
2.1; however one can still estimate the composition which is in the interval [0.75,0.85]
at 68% confidence level. A point like Q = (0.35,0.6), that is located too far from the
curves is inconclusive from the point of view of composition or hadronic interaction
model, but is a strong indicative of large systematic errors in the detector. Note that if
the experimental point results compatible with the hadronic interaction models under
consideration, the composition and its uncertainty can be estimated in a more formal
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FIGURE 2. Diagram of the distributions of ξ1 and ξ2.

way, see Ref. [1] for details.

CONCLUSIONS

In this paper we present a new statistical method to perform composition studies in a
two dimensional space. A main advantage of the method is that it minimizes the ef-
fects of the present uncertainty associated with the hadronic interaction models, used to
simulate cosmic ray showers, on the inferred composition. Furthermore, besides the de-
termination of the composition, it allows an independent verification of the compatibility
between real shower data and hadronic interaction models.
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