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SFip) = 252 Hp)
d*k

+8° ZiF Cr / 16,4 Tu SF(K) Tu(k, P) A (k = p)

The solution is of the form




Dynamical
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Mass Generation in QCD

——— b-quark
—-—- c—quark
fffff s—quark
u,d—quark
o chiral limit

2

Adapted from nucl-th/0007054.
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DCSB and
should have an enormous support. Confinement
» The Quark-Gluon Vertex
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Adapted from Nucl. Phys. Proc. Suppl. 152 43, (2006).




Origin of Mass

Dynamical Mass Generation in QCD Lect 3 Approach

Alfredo Raya

g [ d*konu et Tulk. YAk~ p)
Confinement
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» The Ghost and Gluon Propagators
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Adapted from Braz. J. Phys. 37 201 (2007).
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» The Gluon Propagator is IR finite!
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Adapted from PoS LAT2007, 297 (2007).
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Kugo-Ojima criterion:

» Ghost-Gluon vertex is IR finite
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Confinement in QCD

Kugo-Ojima criterion:

Dimensionless form factors

Adapted from Nucl. Phys. Proc. Suppl. 152 43, (2006).
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Adapted from Braz. J. Phys. 37 201 (2007).
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Kugo-Ojima criterion:

a?D(p?)
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Adapted from PoS LAT2007, 297 (2007).
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Axiom of Reflexion Positivity
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» |s super renormalizable

» Exhibits DCSB and Confinement

» Provides a popular battleground for lattice and
continuum studies

» Exhibits special features of spin and statistics (anyons)
and discrete symmetries

» The Chern-Simons term adds to its structural richness
» Has useful applications in Condensed Matter Physics

» High-T. superconductivity
» Quantum Hall Effect

» Graphene
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» We start by neglecting fermion loops, G(q) =1

-1 -1

» In Landau gauge, it corresponds to a photon propagator

1 9u Qv
0 _
AEW)(CI) = ? (gm, - 22 >

» With a suitable choice of the electron-photon vertex,
the electron propagator can be found self-consistently
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» Possible the simplest choice for the vertex is
r(k,p) =+"

» This corresponds to the diagram
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» In Rainbow Approximation Alfredo Raya
- 0) -1
SFip) = SO Hp)
d3k )
+47Ta W’}/M SF(k)’YVA’u,V(k_p)

» Starting with massless fermions, mg = 0, multiplying by
1 and p and taking trace and contracting with Aff’)

IR o 3 F(k) 1 "
F(p) 1+27r2p2/d k2 + M2(k) (k — p)*

lz(k-pf (2 — €)(K2 + p2)k - p— 2(1 — E)K2p?

M(p) a(2+¢) F(kyM(k) 1
F(p) 272 /d3kk2 + M2(k) (k — p)?
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» Performing angular integrations

1 a§
— = 1- ki)
F(p) / k2 + M2 (k)"
1 k2 + p? | k+p
2kp k—p
M) oG 2) [ AN |k
F(p) ™ Jo + M2(k) [k—p
» In Landau gauge (£ =0)
2a [ kM(k) k+p
M = — I
(p) ™ Jo k2 + M3(k) n‘k—p
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» We have an expression of the form

M(p) = /O " dk F(k, M(K): p. M(p))

%

A
/ dk f(k, M(k); p, M(p))

for k = 0 and A — o0
» Using some quadrature rule, we have

NmaX
M(p) = > wif(kj, M(k;); p, M(p))
=1

Nmax
= Y wif(kj, Mj; p, M(p))

j=1

where w; are the weights of the quadrature, k; the
nodes and M; = M(k;)
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» Instead of solving the equation over an entire domain of
p, we decide that it is enough to know the mass
function only in a discrete set of points

» We can use the same points of the quadrature nodes

P—pi=ki

» We are then left with a system of nonlinear algebraic
equations

Nmax

My = > wif(kj, Mj; ki, My)
j=1
Nmax

My = ) wif(kj, Mj; ko, Mp)
j=1
Nmax

M = wif(kj, Mji ki, M)
j=1
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» To have an analytical insight, let us go back to

3k M(k) 1

Mp) = 20 | o e v (k) (k= p)?

» Linearize this expression substituting M2 (k) = m?

20 [ o MK 1
22 k% + m? (k — p)?

M(p) =

» Next, define

3 .
M(p) = (0% + m)x(p).  x(r) = / (§’7T§3x(k)e'kf
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» To have an analytical insight, let us go back to

d*k  M(k) 1
212 k2 + M2 (k) (k — p)?

M(p) = 2a

» Linearize this expression substituting M2 (k) = m?

20 [ 3 M(K) 1

Mp) = =
() = 3o K2+ m? (k — p)2

» Next, define
3 .
wm=ﬁ+ﬁmw,xm=/é$ﬂmw

» It is straightforward to see that x(r) verifies

o2 2 d ,
G+ 2 50+
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» A solution to this equation is

x(r) = Ce™™

» The constant C is fixed such that M(0) = m

» The Fourier transform of x(r) yields

m3

T2 m?

M(p)

» Expectedly, M(p — 0) ~ m and M(p — o) ~ 1/p.
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V(r)=
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In(e®r) + cte + O <1>
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» Quenched approximation G(0) =1
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_ &G(0)

V(r) o

In(e®r) + cte + O <1>

r

Confinement

» Quenched approximation G(0) =1

» There is confinement




Origin of Mass

Conflnement In QED3 Lect. 3: Approach

Alfredo Raya

» The potential between two static charges in QED3 is

e3G(0) 5 1
o In(e“r) + cte + O <r>

» Quenched approximation G(0) =1

V(r)=

Confinement

» There is confinement

» Including loops of massless fermions

1
g(Q) HT’W—}() as qg—0




Origin of Mass

Conflnement In QED3 Lect. 3: Approach

Alfredo Raya

» The potential between two static charges in QED3 is

V(r)= e3;;7$0) In(er) 4 cte + O (1)

Confinement

» Quenched approximation G(0) =1

» There is confinement

» Including loops of massless fermions

1
g(q) H_TNf—}O as qg—0

» Confinement is swept away




Origin of Mass

Conflnement In QED3 Lect. 3: Approach

Alfredo Raya

» The potential between two static charges in QED3 is

e3G(0) 5 1
o In(e“r) + cte + O <r>

» Quenched approximation G(0) =1

V(r)=

Confinement

» There is confinement

» Including loops of massless fermions

1
g(Q) HT’W—}() as qg—0

» Confinement is swept away

» Including loops of massive fermions, G(0) finite




Origin of Mass

Conflnement In QED3 Lect. 3: Approach

Alfredo Raya

» The potential between two static charges in QED3 is

V(r)= e3;;7$0) In(er) 4 cte + O (1)

Confinement

» Quenched approximation G(0) =1

» There is confinement

» Including loops of massless fermions

1
g(Q) HT’W—}() as qg—0

» Confinement is swept away

» Including loops of massive fermions, G(0) finite
» Confinement is reinstated




Confinement in QED3

In(A(t)

T T T T
quenched QED3

massless fermions in vac.pol.
fermions with fixed mass in vac.pol.
dynamical fermions in vac.pol.

o x + ¢

Adapted from nucl-th /0007054
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Let us consider vacuum polarization effects into the SDE for
the fermion propagator

-1 _ -1 qr‘\:/% Confinement

Consider N¢ massless fermion families
TN - N/ N
AMANBANMA = A har + | han

N4 . / N4
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Let us consider vacuum polarization effects into the SDE for
the fermion propagator

-1 -1 qr‘\./% Confinement
— @ - @

Consider N¢ massless fermion families

7N TN N
AANANBANNN = A han + AJ‘\:‘ r\/\' ?’\"‘4‘ +

N4 . / N4

This amounts to

g(q): 1 . 1
@ @PL+N(q)] 24 £l




Origin of Mass

Vacuum POlarlzatlon EfFeCtS Lect. 3: Approach

Alfredo Raya

The resulting equation in this case is, setting e =1,

1 /°° kM(K) | [ k+p+ N/
212p Jo K2+ M2(k) " ||k — p| + N¢/8

M(p) =

Confinement
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The resulting equation in this case is, setting e =1,

Me) = 5o [ kgt 2L
212p Jo K2+ M2(k) " | |k — p| + N¢/8
0.014 T . . . . . Confinement
— Ny=1
0.012 Ny=12 |
Ny=14
0.01 - Ny=1.6 |
Ni=18
0.008 F Ny=2 |
Ni;=22
g F Ni=24 |
S 0.006 N:=2'6
Ni;=28
0.004 r N;=3 i
0.002 r i
0=
-0.002
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The resulting equation in this case is, setting e? = 1, ISR

I KM (K) k+p+ N¢/8
M(p) = /0 K2+ M2(k) "Lk—plﬂ"f/éJ

2m2p

Confinement

. 1— 0

condensate
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» A more realistic situation would consider effective
screening from fermion loops
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and the screening
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» A more realistic situation would consider effective
screening from fermion loops

Confinement

» There will be a feed back between the amount of DGM
and the screening

» Analyse the behavior of

e /d3k”yﬂ SF(K)Tu(k, p)A(k — p)
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» Ward identity

Confinement

> (k= p)Ty = SFH(K) — S74(p)

> Restricts 1(g) to be gauge invatiant

» We end up with

F(k)M(k) (F(k), F(p))
M(p) ~ /dkk2 + M2(k) 1+ N(k — p)




DMG and Confinement

» Assume that the effective screening leads to chiral
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» Assume that the effective screening leads to chiral
symmetry restoration

» The vertex should be related to F(p) by the Ward
identity

v

F(p) should be an homogeneous function of momentum
in the IR :

F(¢p) = ¢°F(p)

» [1(q) should also be homogeneous:

N¢q) = ¢ N(q)

v

Combining results

M(¢p) = M(p)!!

» There is an infrared collusion
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