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Abstract. Dynamical chiral symmetry breaking and confinement are two crucial features of Quan-
tum Chromodynamics responsible for the nature of the hadronspectrum. These phenomena, pre-
sumably coincidental, can account for 98% of the mass of our visible universe. In this set of lectures,
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MOTIVATION

For millennia, mankind has always tried to explain how the world works. Every piece
of knowledge, every new observation, every brilliant idea have modeled a masterpiece
of that spot we like to call our home –the Universe. A common denominator of ancient
cosmogonies has been to provide the elements necessary to explain what are the compo-
nents of the Universe and how these ingredients sustain the delicate dance of the cosmos.
Our modern understanding about the composition of the universe reveals that most of
our home is dark, either in the form of dark energy, about a 74%of it, or as dark matter,
another 22% [1]. Only a small portion of the Universe is what we see, and it is what has
delighted us since ancient times.

Science, and particularly, physics, usually take a reductionist path to unveil the deep-
est secrets of the Universe. In order to understand galaxies, we need to know everything
about stars and planets: what are they made of, how they evolve in time, how they col-
lapse. This, in turn, requires us to learn about molecules, atoms, nuclei, nucleons, and,
ultimately, quarks. Our hope is that if we manage to explain the fundamental building
blocks, that is, if we manage to know what are their basic properties, we should be able
to explain what is the Universe made of. And we also need to know how these funda-
mental blocks are glued together as to keep the Universe flowing. These are the basic
questions that elementary particle physics tries to answer.

Nature has given mankind the ability to ask questions. Most of the progress we have
achieved was done answering questions, not necessarily wise man questions; the simpler,
the better. One of such has to do with one property of matter very familiar to us in
our everyday experience:Is mass a fundamental property of matter?At first sight, that
questions is rather odd: We are so used to relate mass to matter, that we cannot think of
one without the other. And it is true! Our everyday experience is ruled by the classical
laws of physics, elegantly summarized by Sir Isaac Newton [2]. In particular, Newton’s
second law establishes that a body accelerates proportionally to the force acting on it
divided by its mass, in such a way that the motion of a body is intimately related to its



mass. Furthermore, from Lavoisier we know that in every process, the mass is conserved.
Thus, the Newtonian vision is that the mass of a body is the quantity of matter arising
from its density and bulk conjointly. This brings us to the conclusion that the mass is,
indeed, a fundamental property of matter at the classical level.

It took one more genius to ask a simple question that crumbledthe Newtonian vision
of mass: “Is the energy of a body a measure of its energy content?” Answering this
question, Albert Einstein [3] introduced perhaps the best known law of physics,

m=
E0

c2 , (1)

whereE0 is the body’s rest energy. To be fair, that is not precisely the most famous form
of the equation. That would beE0 = mc2, which somehow prejudices to think of energy
as a mass, and not the other way around. The realization of Einstein’s conception of
mass takes place everyday in particle accelerators, where from the collisions of particles
at sufficiently high energies, much heavier particles are produced.

The difference between the Newtonian and the Einstenian conception of mass at the
fundamental level is attainable only at the subatomic level(see, for instance, Ref. [4]).
For example, consider the energy of a hydrogen atom in its ground state and think of it
as being just its “Einstenian” mass. On the other hand, consider the mass of the proton
and of the electron and add them in the “Newtonian” way. The difference of these two
masses corresponds to the ionization energy of the hydrogen, which is a difference of
O(10−8)! This tells us that at the atomic level, still the mass is Newtonian. A similar
reasoning applies to the nucleus. Our empirical knowledge shows that most of the mass
of a nucleus comes from the sum of the mass of its nucleons. It is hardly a 1% difference,
for example, the difference between the mass of a nucleus that undergoes anα-particle
emission as compared to the mass of the products of the decay.Such a difference is due
to the nuclear binding energy. The mass of a nucleon, however, is a completely different
story. Light quarks acquire, through the Higgs mechanism, current masses of, say, 3-5
MeV, such that the sum of the masses of three light quarks is around 10 MeV, 98% less
than the mass of the proton! This means that the mass of a nucleon is “Einstenian”.

A warning note is necessary here. It is usually quoted that the Higgs mechanism [5]
(based upon the ideas of Spontaneous Symmetry Breaking of Nambu [6], whom was
recently Laureated with the Nobel Prize of Physics 2008), isthe origin of the mass in
the Universe. This is far from being true. Although the Higgsmechanism accommo-
dates the mass of the gauge bosons of the electroweak Standard Model respecting its
gauge symmetry, and it also gives, say, electroweak masses to quarks and leptons, it cer-
tainly cannot explain around 98% of the mass of our visible Universe, which is mostly
composed of protons and nucleons. Understanding the Higgs mechanism is necesary to
explain the existence of atoms and how do they form stable structures, a question as old
as human kind itself. One of the physics goals of LHC [7] is precisely to find the Higgs
boson and determine its propeties. Yet, the origin of mass ofthe visible Universe has an
entirely different explanation.

The origin of most of the mass we can see is explained by the strong interactions
of QCD [8]. The story goes as follows: Our inability to observe colored excitations in
a detector tells us that valence quarks are confined inside hadrons. Furthermore, when
they are very close to each other, that is to say, when they arevery energetic, they behave



as free particles. This is the well known property of asymptotic freedom of QCD [9].
But when they are less energetic, namely, at a distance scaleof the order of a nucleon
size, their respective color clouds start to overlap. In these clouds, because of the strong
interactions, virtual quarks and antiquarks start condensing, forming the chiral quark
condensate. This condensate provides the valence quarks ofthe nucleon of a dense,
sticky medium in which they propagate as though their masseswere some 300 MeV.
Adding the mass of three of these guys explains the value of the mass of a nucleon
and hence of the visible Universe! The dynamically generated mass actually measures
the confining energy of the quarks inside a nucleon. The phenomenon just described is
known as the dynamical breaking of chiral symmetry, and occurs to light quarks even if
their current masses vanish [10]. The heavier the quark, it becomes less sensitive to the
dynamical effects of color interactions at low energies. Therefore, these heavy quarks
acquire their masses through the Higgs mechanism instead.

In this contribution I shall present a particularFrameworkto explore the details of the
phenomena of confinement and dynamical chiral symmetry breaking, the Schwinger-
Dyson equations [11], sometimes also referred to as Dyson-Schwinger equations. For
this purpose, I shall work out a toy model of QCD which, however, is interesting by
own merits, QED3, that is, the standard quantum electrodynamics restrictedto a plane.
Students are encouraged to follow theApproachand develop the necessary techniques
to unveil the secrets of the origin of mass.

FRAMEWORK

A natural framework to study the strong interactions of QCD is, indeed, a lattice simula-
tion. Lattice gauge theory has provided an accurate description of the hadron spectrum,
within a 10% error of the experimental data [12], which confirms the physical picture of
the origin of mass described above [8]. A different, and in many senses, complementary
platform to study non perturbative phenomena in Quantum Field Theories is provided
by the Schwinger-Dyson equations (SDEs) [11]. These are thefield equations of a given
theory, and form an infinite tower of relations among the Green’s functions of the theory.
In order to address the issues of confinement and dynamical chiral symmetry breaking
(DCSB), and for the sake of simplicity, instead of solving the SDEs for QCD, I shall
restrict myself to a simpler and more familiar theory, QED, starting from the Lagrangian

L = ψ̄(iγµ(∂µ − ieAµ)−m0)ψ −
1
4

FµνFµν −
1

2ξ
(∂µAµ)2 , (2)

where all the quantities carry their usual meaning.

In order to understand the physical content of the SDEs (see,for instance [13, 15]),
consider the perturbative expansion of the fermion propagator SF(p) in QED, Fig. (1).
There appear three types of radiative corrections, to the fermion propagator itself, to
the photon propagator and to the fermion-photon vertex. Defining the self-energy as in



FIGURE 1. Perturbative Expansion of the Fermion Propagator

FIGURE 2. Fermion Self EnergyΣ(p)

Fig. (2), all these corrections are incorporated in this object, in such a fashion that the
perturbative expansion in terms ofΣ(p) now reads

SF(p) = S(0)
F (p)+S(0)

F (p)Σ(p)S(0)
F (p)+S(0)

F (p)Σ(p)S(0)
F (p)Σ(p)S(0)

F (p)+ . . . (3)

and is shown in Fig.(3). Here,S(0)
F (p) is the bare fermion propagator. FactorizingS(0)

F (p),

the remaining expression is a geometric series inΣ(p)S(0)
F (p), which adds to

SF(p) =
S(0)

F (p)

1−Σ(p)S(0)
F (p)

. (4)

Equivalently, leaving the bare propagator apart and factorizing S(0)
F (p)Σ(p)S(0)

F (p), we

again reach at a geometric series inΣ(p)S(0)
F (p), and hence

SF(p) = S(0)
F (p)+S(0)

F (p)Σ(p)
S(0)

F (p)

1−Σ(p)S(0)
F (p)

. (5)

Comparing eqs. (4) and (5), we obtain

SF(p) = S(0)
F (p)+S(0)

F (p)Σ(p)SF(p) . (6)



FIGURE 3. Perturbative Expansion of the Fermion Propagator in terms of Σ(p)

FIGURE 4. Schwinger-Dyson equation for the Inverse Fermion Propagator in QED

This is the SDE for the fermion propagator. On multiplying this expression byS(0) −1
F (p)

from the left andS−1
F (p) from the right, we arrive at the most familiar SDE for the inverse

fermion propagator
S−1

F (p) = S(0) −1
F (p)−Σ(p) , (7)

and is depicted in Fig. (4).

This corresponds to the expression

S−1
F (p) = S(0) −1

F (p)− ie2
∫

d4k
(2π)4γµSF(k)Γν(k, p)∆µν(k− p) , (8)

wheree2 is the electromagnetic coupling,∆µν represents the complete photon propaga-
tor andΓν the full fermion-photon vertex. This is the equation we needto solve in order
to study DCSB.

Notice that the Green’s functions involved inΣ(p) obey their own SDE. The SDEs for
the photon propagator and the fermion-photon vertex are depicted in Figs. (5) and (6),
respectively. Observe that the two-point Green’s functions are coupled to one another
and to a three-point function, which, in turn, is coupled to them and to a four-point
function and so on. Hence, the set of SDEs, which are the field equations of QED, form
an infinite tower of relations among the Green’s functions ofthe theory.

Now, we need to find out which kind of unknowns we are dealing with before we
even try to find them. Let us notice that the complete fermion propagator,SF(p), can
be expressed in terms of two unknown scalar functions of the momentum squared,
multiplied each by the tensor structures1 and 6 p which appear in the Dirac equation.
For reasons that will become clear shortly, we write the propagator as

SF(p) =
F(p)

6 p−M(p)
, (9)



FIGURE 5. Schwinger-Dyson equation for the Photon Propagator in QED

FIGURE 6. Schwinger-Dyson equation for the Fermion-Boson Vertex in QED

and refer toF(p) as the fermion wavefunction renormalization andM(p) as the mass
function. Notice that the pole of the propagator, i.e., the mass of the particle, is located

at p2 = M2(p). The bare propagatorS(0)
F (p) corresponds toF(p) = 1 andM(p) = m0.

The photon propagator, in turn, can be written as

∆µν(q) =
G(q)

q2

(

gµν −
qµqν

q2

)

+ξ
qµqν

q4 , (10)

whereG(q) represents the unknown photon wavefunction renormalization andξ is the
usual covariant gauge parameter.ξ = 0 labels the Landau gauge, andξ = 1 the Feynman

gauge. The bare propagator∆(0)
µν(q) is obtained settingG(q) = 1. Finally, the fermion-

photon vertex can be expressed as

Γµ(k, p) =
12

∑
i=1

vi(k, p)Vµ
i , (11)

wherevi(k, p) are unknown scalar functions andVµ
i are the basis vectors formed from

the products of each the three vectorskµ , pµ andγµ with each of the 4 spin structures
1, 6k, 6 p and 6k6 p. In summary, there are 15 unknown functions in eq. (8). Fortunately, the
gauge principle tells us that not all of them are independent, as they are related through
gauge identities like Ward-Green Takahashi identities [14] and so on. A recent review
on different truncations of SDE can be found in [15].

Confinement and DCSB are usually studied from the fermion propagator. This means
that if we want to truncate the tower of SDEs at the level of eq.(8), reasonable assump-
tions have to be made on the form of the photon propagator and the fermion-photon
vertex. Below we shall consider one of such truncation schemes which, on one hand,
makes the analysis very neat and, on the other hand, shows thekey features of QCD that
explain the origin of mass.



FIGURE 7. Quenched truncation of the Schwinger-Dyson equation for the Fermion Propagator in QED

APPROACH

In order to study DCSB and confinement, let us work in a toy model of QCD: QED3.
That is, let us work with the ordinary QED, but restricted to aplane. Such a theory is
super-renormalizable, so that we don’t have to deal with regularization issues in a trun-
cation of SDEs (see, for example, Ref. [15] for the implications of this fact). Contrary
to the ordinary QED, the planar theory exhibits confinement [16], in a manner such that
in resembles more to QCD that to QED itself. Even more, it has been argued very re-
cently that both the restoration of chiral symmetry and the confinement/deconfinement
phase transitions take place simultaneously in this theory[17]. Furthermore, to the cor-
responding Lagrangian we can add a Chern-Simons term, whichinduces a topological,
gauge invariant mass to the photons, making the structure ofthe theory even richer (a
discussion of the most general QED3 Lagrangian can be found in Ref. [18]). QED3 has
multiple applications not only because it emerges as the infinite temperature limit of
QED [19], but there are many condense matter systems, ranging from high-Tc super-
conductors [20] the quantum Hall effect [18, 21], and more recently, graphene [22], de-
scribed by this theory. In the field of DCSB, QED3 has provided a popular battleground
for lattice, SDEs and other studies, particularly regarding a possible critical number of
fermion families for which the phenomenon ceases to take place [23].

We start our study of DCSB from the SDE for the quark propagator SF(p), which in
QED3 is given by

S−1
F (p) = S(0) −1

F (p)− ie2
∫

d3k
(2π)3γµSF(k)Γν(k, p)∆µν(k− p) . (12)

Here,e2 is the dimensionful coupling of the theory that sets its natural scale. This means
that any new mass scale, like the dynamical mass, should be proportional toe2. To
emphasize the phenomenon of DCSB, we consider massless fermions to start with,
settingm0 = 0 in the bare propagator. In order to truncate the tower of SDEs at this level,

we need ansätze forΓν and∆µν . Let us start by in neglecting fermion loops,∆µν → ∆(0)
µν .

This is the quenched approximation of QED, which is pictorially represented in Fig. (7).

With a suitable choice of the fermion-photon vertex, the SDEfor the fermion propa-
gator can be solved self-consistently. Possible the simplest interaction we can consider
is the bare interaction,Γν(k, p) = γν . This is the so-called rainbow approximation, de-
picted in Fig. (8), and under which the gap equation reads



FIGURE 8. Rainbow truncation of the Schwinger-Dyson equation for theFermion Propagator in QED

6 p−M(p)

F(p)
= 6 p−

iα
2π2

∫

d3k
F(k)

k2−M2(k)
γµ( 6k+M(k))γν∆(0)

µν(k− p) . (13)

Here we have setα = e2/(4π), as usual. This is a matrix equation which can be
converted into a system of scalar integral equations forF(p) andM(p) after multiplying
it by 6 p and1. However, in the Landau gaugeF(p) = 1 (see, for example, Ref. [24]),
so, in this gauge we are left with a single equation forM(p) alone. Such an equation is
derived taking the trace to eq. (13) withF(p) = 1, yielding

M(p) =
iα

2π2

∫

d3k
M(k)

k2−M2(k)
gµν∆(0)

µν(k− p) . (14)

After contracting with the photon propagator, we carry out aWick rotation to Euclidean
space with the following prescriptions,

(k0, p0) → (ik0
E, ip0

E) ,

(k2, p2, (k− p)2) → (−k2
E, −p2, −(k− p)2

E) ,
∫

d3k → i
∫

d3kE . (15)

For ease of notation, we shall drop the subscriptE from every Euclidean space expres-
sion. Hence, we are finally left with the following expression for the Euclidean gap
equation in QED3,

M(p) =
α
π2

∫

d3k
(k− p)2

M(k)
k2+M2(k)

. (16)

We can still go further making reasonable simplifying assumptions [25]. Since the
DCSB is an infrared phenomenon, we expect the dynamically generated mass to serve
as an IR cut-off for the gap equation. We can then linearize the above expression setting
in the denominator of the integrand

M2(k) = M2(0) ≡ m2
dyn , (17)

which yields the linearized gap equation

M(p) =
α
π2

∫

d3k
(k− p)2

M(k)

k2+m2
dyn

, (18)

Notice thatM(p) = 0 is a (trivial) solution of this equation, and would correspond to
that derived in perturbation theory. However, we are interested in a non trivial solution,
which we shall look for making use of both analytical and numerical techniques.



Analytical treatment

In order to solve eq. (18) analytically, define the functionχ(p) through [25]

M(p) = (p2+m2
dyn)χ(p) . (19)

Then we are left with

(p2+m2
dyn)χ(p) =

α
π2

∫

d3k
(k− p)2 χ(k) . (20)

Now, defining the Fourier transform ofχ(p),

ϕ(r) =

∫

d3p
(2π)3χ(p)eip·r , (21)

we are left to the differential equation

d2

dr2ϕ(r)+
2
r

d
dr

ϕ(r)+

(

m2−
2α
r

)

ϕ(r) = 0 , (22)

whose solution is

ϕ(r) = Ce−mdynr . (23)

On Fourier transforming back the result to momentum space, the normalization constant
C is found demanding the infrared behavior ofM(p → 0) = mdyn. The resulting mass
function is then

M(p) =
m3

dyn

p2 +m2
dyn

, (24)

and is depicted in Fig. (9). We observe that the mass functionfalls-off asM(p→ ∞) ∼
1/p2. This is consistent with the expression for the chiral condensate,

〈ψ̄ψ〉 = lim
p→∞

p2M(p)

2
, (25)

derived from the Operator Product Expansion (see, for example, [24]), since it demands
the ultraviolet behaviorM(p) ∼ 1/p2 in order to render the condensate momentum
independent. These limits will become relevant to test the validity of the numerical
procedure that we are about to develop below.
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FIGURE 9. Analytical solution to the linearized Schwinger-Dyson equation for the Fermion Propagator
in QED3. The scale of the graph is set bymdyn = 1

Numerical treatment

Consider again eq. (18) and select a reference frame where the angle between mo-
mentak andp is θ . Then we can writed3k = k2dksinθdθdφ for φ ∈ (0,2π), θ ∈ (0,π)
andk∈ (0,∞). The integration overφ gives a factor of 2π , and the integration overθ is

∫ π

0

dθ sinθ
k2+ p2−2kpcosθ

=
1

2kp
ln

∣

∣

∣

∣

k+ p
k− p

∣

∣

∣

∣

. (26)

Gathering things together, we have

M(p) =
α

π p

∫ ∞

0
dk

kM(k)

k2+m2
dyn

ln

∣

∣

∣

∣

k+ p
k− p

∣

∣

∣

∣

. (27)

Observe that there is an integrable singularity in the logarithm for k = p. In order to
avoid numerical complications coming from this singularity, we can approximate

ln

∣

∣

∣

∣

k+ p
k− p

∣

∣

∣

∣

'
2p
k

ϑ(k− p)+
2k
p

ϑ(p−k) , (28)



whereϑ(x) is the step function. Such an approximation is valid fork � p andk � p,
and yields the simplified SDE given by

M(p) =
2α
π p

∫ ∞

0
dk

kM(k)

k2+m2
dyn

{

p
k

ϑ(k− p)+
k
p

ϑ(p−k)

}

. (29)

This is the equation we need to solve numerically.
Sete2 = 1 to start with. Then, select an integration interval(κ ,λ ) such that

M(p) '
2α
π p

∫ λ

κ
dk

kM(k)

k2+m2
dyn

{

p
k

ϑ(k− p)+
k
p

ϑ(p−k)

}

. (30)

This integral equation is of the form

M(p) =
∫ λ

κ
dk Ker(k,M(k); p) , (31)

where Ker(k,M(k); p) is the kernel of the equation. Thus, we need a quadrature rule
which allows us to approximate

M(p) '
nmax

∑
i=1

∆i Ker(ki ,Mi; p) , (32)

where the∆i are the weights of the quadrature andki the corresponding nodes, as shown
in Fig. (10). Here we have used the notationMi = M(ki). In principle, we should be
interested in the solution of the above expression in the interval p ∈ (κ,λ ). However,
we can resort to the collocation techniques to solve this equation, imagining that we are
only interested in the solutionM(p) over a finite set of grid pointsp1, . . . , p j rather that
the solution over the complete interval. In such a case, we reach at an equation like

M(p j) =
nmax

∑
i=1

∆i Ker(ki ,Mi; p j) , (33)

for eachp j , with the added advantage that if the set of grid points{p j} is selected as
the same set of points of the quadrature rule, i.e.p j = k j for j = 1, . . . ,nmax, we are
left with a system ofnmax algebraic equations for thenmax unknownsMi . This is the
feature of collocation techniques, an integral equation over an interval is translated into
an algebraic system of equations.

Let us apply these techniques to solve eq. (30) in a convenient interval(κ,λ ). A good
integration interval, will be one for which, asκ → 0 andλ → ∞, both the infrared and
ultraviolet behaviors of the mass function we discussed previously have settled over a
couple of orders of magnitude of momentum. For concreteness, let us select the interval
(10−4,103). The next step is to select a quadrature rule to perform the integration. The
simplest choice would be a trapezoidal rule and thus a set of grid points in the selected
interval. A logarithmic grid is the most appropriate, sincethere are several orders of



FIGURE 10. A quadrature rule for integration

magnitude involved. Furthermore, one has to make sure that the integration points are
uniformly distributed over the interval of integration. Itis desirable to have the same
number of grid points over each decade in the interval. For example, if we want to
distributeµ points in each decade of the interval, and we want

nmax= [log10(λ )− log10(κ)]µ +1 (34)

grid points, defining

η =
ln(10)

µ
, (35)

we observe that the recursion

p j+1 = p j +κe( j−1)η (eη −1) , j = 1, . . . ,nmax−1 (36)

provides us with a set of points uniformly distributed over the interval, exactlyµ of them
in each decade.

We now need to construct the integration weights of our trapezoidal quadrature.
Notice that each weight∆ j in the logarithmic grid should depend of the grid pointp j ,



as opposed to the ordinary “equally spaced” weights of a linear grid. Therefore, we can
define them as

∆ j =
1
2

(

p j+1− p j−1
)

j = 2, . . . ,nmax−1

∆1 =
1
2

(p2− p1) , ∆nmax =
1
2

(pnmax− pnmax−1) . (37)

With these ingredients, we are ready to write down the systemof equations to be solved.
From the analytical treatment, we expectM(p) to behave like a constant asp → 0.
That means that in the denominator of eq. (30), we can writemdyn = M1, and thus, for
j = 1, . . . ,nmax, we have an equation of the form

M j =
2α
π p

nmax

∑
i=1

∆i
kiMi

k2
i +M2

1

{

k j

ki
ϑ(i − j)+

ki

k j
ϑ( j − i)

}

, (38)

since if i > j, thenki > k j . We can now proceed to solve the system of equations given
above by standard techniques, like the Newton-Raphson method.

In order to test the stability of the procedure, we should establish the dependence
of the solution upon the number of grid points. In Fig. (11) wedepict the behavior of
mdyn as a function ofµ, and observe that forµ > 8, the variation ofmdyn with the
number of points per decade is negligible. In Fig. (12), we depict the mass function
M(p) for different values ofµ. We observe precisely that forµ & 10, all the curves
lay practically on top of each other, which points out the fast stability of the numerical
procedure. Figure (13) shows de comparison of the analytical expression, eq. (24), and
the numerical result forµ = 20. The agreement of the curves both in the infrared and
ultraviolet allows us to readily infer that both the infrared constant behavior ofM(p)
and the ultraviolet fall-off as 1/p2. The difference, of course, arises in the intermediate
region, where the effects of the linearization are stronger.

Although from this exercise we conclude that QED3 is a theory that supports DCSB,
we still need to find out whether the solution to the SDE under the set of simplifying
assumptions, eq. (24), supports confinement. Such an issue is discussed below.

Confinement Test

Confinement is connected to our impossibility of detecting colored states. From the
theoretical point of view, there are several criteria connected to the infrared behavior of
Green’s functions to establish confinement (see, for example, [26]), like the Kugo-Ojima
criterion [27] and the Gribov-Zwanzinger confinement scenario [28], which demand an
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FIGURE 11. Stability test of the numerical solution withmdyn

infrared suppressed behavior of the gluon propagator and quark-gluon vertex and an
infrared enhancement of the ghost propagator in QCD. Recentlattice simulations, how-
ever, seem to disagree with those criteria, particularly inthe behavior of the ghost and
gluon propagators [29]. Here, we adopt a different point of view to establish confinement
in QED3, based upon the Axiom of Reflection Positivity [30], which establishes that if
an Euclidean Green’s function describes a stable excitation, it should be positive defini-
tive. This statement provides us with a confinement test thatwould help us understand
this phenomenon in QED3 and its connection with DCSB [17].

First we need to review the physics behind confinement in QED3 [16]. The potential
between two static charges, as the separation between them,r → ∞, behaves like

V(r) =
e2

8π
G(0) ln(e2r)+const+O

(

1
r

)

. (39)

This means that in the quenched theory,G = 1, the potential is logarithmically con-
fining. This is precisely the scenario we are considering. Bear in mind, however, that
the situation changes drastically if loops of massless fermions are taken into account.
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ConsideringNf fermion families, we can easily prove that

G(k) =
8πk

8πk+e2Nf
→ 0 as k→ 0 , (40)

which is understandable on physical grounds, since massless fermions cost no energy to
produce, and thus, they infinitely screen the static charges, sweeping away confinement.
However, if the fermions within the loops acquire masses either dynamically or explic-
itly, they provide an effective screening, renderingG(k) 6= 0 and finite ask→ 0, and thus
confinement is reinstated.

Confinement can be studied from the fermion propagator in thefollowing form [16]:
Let us start defining the following space-averaged Schwinger function

∆(t) =
∫

d2x
∫

d3p
(2π)3ei(p0x0−~p·~x)σs(p) , (41)

where

σs(p) =
F(p)M(p)

p2 +M2(p)
(42)
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is the scalar part of the fermion propagator. The Axiom of Reflection Positivity [30]
establishes that if the propagator describes a stable particle,

∆(t)∼ e−mt (43)

andm corresponds to the mass of the particle. Such a behavior is found, for example,
from the free fermion propagator. Actually, this test is performed in lattice simulations
to obtain the mass of hadronic resonances. On the other hand,when the propagator
possesses complex singularities,∆(t) is no longer positive definite, but behaves like

∆(t)∼ e−m1t cos(m2t +δ ) , (44)

wherem1 andm2 are the position of the said complex poles. In this case, the propagator
describes a confined excitation. There are alternative formulations of this test [17].

If we compute the spatially averaged Schwinger function, eq. (41), with the analytical
form of our problem, eq. (24), we obtain the curve shown in Fig. (14). We can see that,
indeed, our solution induces an oscillatory behavior on theSchwinger function, which
is more evident in Fig. (15), where we plot the logarithm of the absolute value of∆(t).
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Each peak corresponds to a solution of∆(t) = 0. Thus, we conclude that both DCSB
and confinement are present in our study.

A word of caution is at hand. The positiveness of the Green’s function is a sufficient
condition for confinement, but not necessary. The counterexample is QCD in (1+1) di-
mensions [31]. There, the propagator exhibits complex singularities, but the color sin-
glet meson bound state amplitudes vanish precisely at the fermion mass shell momenta.
However, confinement is realized in such a theory via a failure of the so called cluster
decomposition property [32].

FINAL REMARKS

Through these lectures, we have reviewed the dynamical generation of light quark mass.
Such a mass is a measure of the confining energy of these quarksinside the nucleons,



-12

-10

-8

-6

-4

-2

0

20 40 60 80 100 120 140 160 180

ln
|∆

(t
)|

t
FIGURE 15. Logarithm of the confinement test funtion∆(t)

and is determined by the strong interactions of QCD. To understand the relationship
between confinement and DCSB, we have worked out an neat example of a toy model
of QCD which exhibits both these phenomena, QED3. The SDE is the platform we have
selected for this purpose, performing a truncation the tower of SDEs under simplifying
assumptions. We have presented a detailed analytical solution to the gap equation of
QED3, and also, we have developed a numerical procedure to look for the dynamically
generated fermion propagator. A confinement test performedon the propagator revealed
that this chirally asymmetric solution to the SDE also describes a confined excitation.
This exercise points out the key features of strong interactions which reveal the origin
of mass of the visible Universe.
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