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Chapter 1

Introduction.

Weak interactions
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Beta Decay —\

Positron energy spectrum from

5 beta decay of % Cu

T 3

2 =
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T8 Q of the reaction

Y = 0.653 MeV
1 I 1

0 0.2 04 0.6
Positron kinetic energy in MeV

Primary spectrum of the emitted electron
is continuos. Chadwick — 1914

History of weak interactions goes back
to the discovery of radioactivity by Bec-
guerel -1896-.

beta decay: a nucleus emits an electron
Increasing its charge:

64Cu — %4 Zn + e~

However: Feicy # Foay,, + E,

|
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Beta Decay T

7

_ History of weak interactions goes back
Positron energy spectrum from . . ..
beta decay of 8 Cu to the discovery of radioactivity by Bec-
guerel -1896-.

Falative number of
positrons emitted

O of the reaction beta decay: a nucleus emits an electron
. . J-083MeV increasing its charge:
i {12 {4 (L&

64 64 —
Positron kinetic energy in MeV Cu— *"*Zn+e

Primary spectrum of the emitted electron

However: E E E
is continuos. Chadwick — 1914 640y 7 Loszn + Ee

In 1931 Pauli "...as a desperate remedy to save the principle of energy con-
servation..." postulated that a massless, chargeless and weakly interacting
particle was emitted in the beta decay process.

The new particle was named "neutrino” by Fermi in 1934, after the discovery
of the neutron by Chadwick (1932).
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Beta Decay T

7

_ History of weak interactions goes back
Positron energy spectrum from . . ..
beta decay of 8 Cu to the discovery of radioactivity by Bec-
guerel -1896-.

Falative number of
positrons emitted

O of the reaction beta decay: a nucleus emits an electron
. . J-083MeV increasing its charge:
i {12 {4 (L&

64 64 —
Positron kinetic energy in MeV Cu— *"*Zn+e

Primary spectrum of the emitted electron

However: E E E
is continuos. Chadwick — 1914 640y 7 Loszn + Ee

In 1931 Pauli "...as a desperate remedy to save the principle of energy con-
servation..." postulated that a massless, chargeless and weakly interacting
particle was emitted in the beta decay process.

The new particle was named "neutrino” by Fermi in 1934, after the discovery
of the neutron by Chadwick (1932).

Pauli new particle was first detected in 1956 by Cowan y Reines comming
from a nuclear reactor at Savannah River, South Carolina.
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f Beta Decay _\

— B Magnetic
V L ﬁeid
momentum —@b— momentum o
é@ Beta emission is |
~§— spin —= 5N preferentially in Nuclear
the direction 80 spin
Neutrino Antineutrino opposite the Co
(left-handed) (right-handed) nuclear spin, in
violation of
. _ conservation
Beta decay violates parity. of parity.
Wu, 1957

Only left components of both, the elec-
tron and the neutrino, are involved by the B

. . . a
Interaction that mediates beta decay.
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f Fermi Theory T

With the discovery of the neutron it was suggested that beta decay was
actually produced by the process: n —p+e~ + 1,

Nevertheless, the characteristic life times range from few minutes to years:

T, & 1omin VS, Tro_, & 10716 s,

Thus, the interaction mediating beta decay has to be weaker than
electromagnetism.

. |
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f Fermi Theory T

With the discovery of the neutron it was suggested that beta decay was
actually produced by the process: n —p+e~ + 1,

Nevertheless, the characteristic life times range from few minutes to years:

T, ~ 15 min VS. T,o ~ 10710 s.

-

Thus, the interaction mediating beta decay has to be weaker than
electromagnetism.

In 1934 Enrico Fermi presented an effective theory
that describes beta decay based on the Hamilto-
nian (in natural units)

with the charged courrent  J| = py,n + veye
Gr = 1.16637(1) x 107> GeV 2

Parity violation requires the V-A current: v, — v, (1 — 75)

|
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f Universality: Pion decay —‘

= uty,, T = uT oy, ' =253 x 1071 MeV.

lllustrate parity violation and Universality of weak interactions.

| |
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f Universality: Pion decay ﬁ

Tt — /L+VM; T = Vg,

' =253 x 107 MeV.
lllustrate parity violation and Universality of weak interactions.

Fermi theory is easily extended to this case:

7y = ey (1 —v5)ve + oy (1 — v5)vpy + TYH(1 — v5) 07
H = 5 Jp 0u®r +j2’LT8M<I>;fT

To the lower order: Lo, = 4—” (1 —ve) p7Ey ;

m2 m
therefore: L G d T R ll

m2)2
T(m—eve)

2
T
2 2 _ .2
m/vb(m7r mu)

—1.28 x 104

From observations: 'z _cy, =3.11 X 1078 MeV; I'r 0, = 2.53 X 1071 MeV;
thus  ar =2.09 x 1079 MeV 1 ;

2
andonegets T'y .., = oo

2 m3[1 — (mx/m7)?)? = 2.42 x 10710MeV
vs. (2.6 £0.1) x 107 19MeV
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f Muon decay ﬁ

The analysis of the decays u©~ — e v, ; and pu™ —efrv.p,; has
played an important role in the understanding of weak interactipons.

From: H=—=jl J’  onegets ~ B

\/éjﬁu

The measured life time 7, = (2.19703 & 0.00004) x 107 s
provides one of the best stimates for G

T(p — ever,) 19273

. |
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f Muon decay ﬁ

The analysis of the decays u©~ — e v, ; and pu™ —efrv.p,; has
played an important role in the understanding of weak interactipons.

From: H=—=jl J’  onegets ~ B

\/éjﬁu

The measured life time 7, = (2.19703 & 0.00004) x 107 s
provides one of the best stimates for G

T(p — ever,) 19273

From the same theory one also gets good stimates for other processes, as
T — eb.v, and u — ev,v,, with the ratio T(T—eelr) o i

T(p—evev,) ~

Mass ratio gives 7.43 x 107 ; vs. the observed 7.36 x 10~"
Furthermore:

® KT —>,u+uu; mev, ;...

® Hyperonesdecay: A — pr ;X" —nn ;X7 — AetTv.—;

#® Neutrino scattering: v,e — v, e; v,n — up; v,n — pX;...
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f From Fermi Theory to the Standard Model ﬁ

Although successful, Fermi theory is incomplete. Consider v.e — v.e

2
H = G—\/gjgujg , Indicates that o ~ fo s = E?

! cm*

Unitarity requires that o < 1=

s

= Thus, at £ E.,, > /&= ~ 500 GeV ; o violates unitarity
F

. |
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f From Fermi Theory to the Standard Model ﬁ

Although successful, Fermi theory is incomplete. Consider v.e — v.e

2
1 j¢ s indicates that o ~ “E° ;s = E2 .

G
H = TI;]w

167
5

Unitarity requires that o <

= Thus, at £ E.,, > /&= ~ 500 GeV ; o violates unitarity
F

v e

Usually, non unitarity of the amplitude in Born approxima-

tion is reestablished by high order corrections, however,

Fermi theory involves divergent diagrams in the second
e Y order.

Problem: we deal with a non non renormalizable theory:
G r IS dimensionful.

. |
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f From Fermi Theory to the Standard Model —‘

Yukawa (1935) suggested the concept of interme-

diary bosons. An idea retaken by Schwinger in
1957.

Assuming a massive boson, W=, in the low en-
ergy regime, m?, > Q? ; one identifies <£ ~

V2
872; . Moreover o will be well behaved at high
energies.

Nevertheless in ee — W W ; processes o violates
unitarity again unless a neutral current is included.

1961: Glashow developed the SU(2) x U(1) gauge model including QED.

Standard Model for leptons arose finally after adding the Higgs mechanism —
Weinberg (1967) y Salam (1968)—
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f From Fermi Theory to the Standard Model _\

Elementary Particles
GIM mechanism allowed to extend the model

to include quarks.

Currently we know there are three families of
fundamental fermions.

Bosons

't Hoof & Veltman proved renormalizability
(1971).

Leptons Quarks

W and Z where first observed in CERN.

High precision physics has been provided
since then by LEP (CERN) and SLC (SLAC) .

\_ The Higgs remains elusive... waiting for LHﬂ
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Chapter 2

A Brief on Gauge Field Theories




f Lagrangian Densities T

Fundamental quantity for any QFT is the action

S = /d4:v L(z),

where the Lagrangian density £ is a Poincaré invariant, local and real
function of fields and their derivatives, with non explicit dependence on space
coordinates.

® Complex scalar field: Ly = 0r¢*(2)0up(x) — m2p* ¢ — 3 (d*¢)?

® EMfield: Lgy =-3F,F"; where F,, =0d,A, — 0,4,

® Fermion field: Ly =1 (iy*0, —m)y

. |
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f Lagrangian Densities T

Remainder on fermion theory:

Y is solutionto  (iy*d, —m)y =0; o =T0.

Dirac matrices obey Clifford algebra: {y*,~+"} = 2n*¥
Chiral representation:

o [0 1 A
=401 0 =\ g

where ¢ = (01,02,03) are the Pauli matrices.
. —1
Defining 5 = iv"y19%9° = ( 0 (1) ) such that {~,,v5} =0,

VL
VR

o Qy

one has ¢ = Yy +Yr = ( ) where v59r 1, = £Yr. 1,

Notice that: Yy = ripg + iy but v, = Yry,00 + YrY0R

L (exercisﬂ
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f Gauge Symmetry ﬂ

Consider the interaction Lagrangian:

L= —C]AME’YM@D — _Aujf?M
which describes the coupling of a fermion to an electromagnetic potential.

Derived from the minimal coupling rule: p* — p* — gA,,, provides
1

Lopp =¥ " (10, — g4,) = m) ¥ — JF?

. |
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f Gauge Symmetry ﬂ

Consider the interaction Lagrangian:

L= —C]AME’YM@D — _Aujf?M
which describes the coupling of a fermion to an electromagnetic potential.

Derived from the minimal coupling rule: p* — p* — gA,,, provides
1

Lopp =¥ " (10, — g4,) = m) ¥ — JF?

Same formula can be obtained by, first, observing that

Ly =1 (iv*d, —m)+p isinvariantunder ¢ — e %),

. |
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f Gauge Symmetry ﬂ

Consider the interaction Lagrangian:

L= —C]AME’YM@D — _Aujf?M
which describes the coupling of a fermion to an electromagnetic potential.

Derived from the minimal coupling rule: p* — p* — gA,,, provides

- 1
Lorp = ¥ (10, — ady) — m] b — 1 F*

Same formula can be obtained by, first, observing that

Ly =1 (iv*d, —m)+p isinvariantunder ¢ — e %),

Then, realizing that, when promoted to be local, 1 — e~*(*)q)  then

Lomp — B 1" (10, — a (Ay — 0,0)) — m] o — 1

remains invariant provided one simultaneously performs the
gauge transformation

B A, — A, + dua(z) o
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f Gauge Symmetry —‘

Lesson I: One could start with the globally invariant Lagrangian (£,,) and
"force" it to be locally invariant.

In order to accomplish this:
® Add a gauge field, A, associated to the group symmetry - U(1).
® Change 0, by the covariant derivate D,, = 9,, + igA,

| |
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f Gauge Symmetry ﬂ

Lesson I: One could start with the globally invariant Lagrangian (£,,) and
"force" it to be locally invariant.

In order to accomplish this:
® Add a gauge field, A, associated to the group symmetry - U(1).
® Change 0, by the covariant derivate D,, = 9,, + igA,

Another example: L4 = 0#¢*0,¢ globally invariant under ¢ — e "“¢

. |
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f Gauge Symmetry ﬂ

Lesson I: One could start with the globally invariant Lagrangian (£,,) and
"force" it to be locally invariant.

In order to accomplish this:
® Add a gauge field, A, associated to the group symmetry - U(1).
® Change 0, by the covariant derivate D,, = 9,, + igA,

Another example: L4 = 0#¢*0,¢ globally invariant under ¢ — e "“¢

Then, consider: ¢ — e @@g . = 0, — €7 (9, — iq0,a) ¢
= L4 Is not any more invariant.

However, D,¢ — D,e "“¢p =e"*[9, +iq(A, — 0,a)] — e "*D,¢
so provided that A, — A, + 9,

L = (D"¢)*(Du¢) — +F? |s Gauge invariant.

However, A, A* mass term is not...
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f Non Abelian Gauge Symmetries ﬁ

We may extend previous concepts to non Abelian Lie groups. Consider

SU(N), whose generators, T,: [T, Ty = ifapcTe;  TrT, Ty = 504

. |
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f Non Abelian Gauge Symmetries ﬁ

We may extend previous concepts to non Abelian Lie groups. Consider
SU(N), whose generators, T,: [T, Ty = ifapcTe;  TrT, Ty = 504

Given a set of N scalars, ®, with the free Lagrangian: £ = 9*®7.9,®
globally invariant under: @& — U(2)® = e 9 Ta®

The locally invariant theory includes the general covariant derivative:

D, = 0, +igT,Aj(x)

. |
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f Non Abelian Gauge Symmetries ﬁ

We may extend previous concepts to non Abelian Lie groups. Consider

SU(N), whose generators, T,: [T, Ty = ifapcTe;  TrT, Ty = 504

Given a set of N scalars, ®, with the free Lagrangian: £ = 9*®7.9,®
globally invariant under: @& — U(2)® = e 9 Ta®

The locally invariant theory includes the general covariant derivative:
D, = 0, +igT,Aj(x)
Yang-Mills fields: T,A%" = U~ 'T,A%U +iU~"'0,U

Besides, we mustadd Ly = —5TrF,, Fr = —1Ff, Fo*

where F,, =T,F;, and F}, =0,A% —0,A% — gfabcAZA,C/

exercise: Verify gauge invariance of (D#®)T(D,,®)

. |
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f Spontaneous Symmetry Breaking ﬂ

vacuum = Minimal energy state. It can be de- _ Exactsymm. Lr
generated. 13\% = Inv

0056'
Qo“‘a(\e
Coleman’s Theorem: If the vacuum is invari- S

ant under a given symmetry group, G, so will P— . _
be the Lagrangian Vno—in\§Xp"C'tB' lho—lnv

This describes an exact symmetry

. |
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f Spontaneous Symmetry Breaking ﬂ

vacuum = Minimal energy state. It can be de- _ Exactsymm. Lr
generated. 13\% = Inv

0056'
Qo“‘a(\e
Coleman’s Theorem: If the vacuum is invari- S

ant under a given symmetry group, G, so will P— . _
be the Lagrangian Vno—in\§Xp"C'tB' lho—lnv

This describes an exact symmetry

If vacuum is not invariant, this does not determine what it should happen for
the Lagrangian In any case, the symmetry would be broken as a whole.

- L non invariant indicates an explicitely broken symmetry
- When £ remains invariant we have a Spontaneously Broken symmetry

There Is a close connection among SSB and gauge boson masses.

. |
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f Spontaneous Breaking of Global Symmetries ﬁ

Consider the Lagrangian:

A
Ly = 0" (0)0u0(x) —m?6" 6 — Z(676)°  A>0

which is invariant under the global U(1) transformations: ¢ — e '*¢

. |
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f Spontaneous Breaking of Global Symmetries ﬁ

Consider the Lagrangian:

* * >\ *
Ly = 0 ¢*(2)0,¢(x) — m*¢d* ¢ — (¢ ?)?>  A>0
which is invariant under the global U(1) transformations: ¢ — e '*¢

Vacuum corresponds to the field configuration which minimizes the potential
(the vacuum expectation value). In this case (¢) = 0.

Vacuum is non degenerated and it is invariant — Symmetry is exact.

|
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f Spontaneous Breaking of Global Symmetries —‘

Consider the Lagrangian:

A
Ly = 0" (0)0u0(x) —m?6" 6 — Z(676)°  A>0

which is invariant under the global U (1) transformations: ¢ — e '“¢

In contrast, consider:
A
V(9) = —1¢"¢ + 7 (679)°

The minimum now fulfills (exercise):

2 _ 247
(9)]2 = 2=

Degeneracy: U(1) maps any given value into another with a different phase.

(%

\_Symmetry IS spontaneously broken. J
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f Spontaneous Breaking of Global Symmetries ﬁ

It iIs convenient to consider the redefinition of field variables over the classical
vacuum: ¢ — (¢) + ¢(x)

Setting this into the potential we get (exercise):

4

X\ A
V(g) = —% +2p* (Re ¢)” + \@u Re ¢|¢” + Z\qbl“

Thus, the theory describes:
® A massive scalar: ¢, =2 Re¢  with mass /2.

® Amasslessscalar: ¢, =+v21Im¢ the Goldstone boson.

. |
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f Spontaneous Breaking of Local Symmetries —‘

Consider instead: £ = (D"¢)*(D,¢) — V(¢) — 1 F?

L 1 :
Under redefinition: ¢ — (v + ﬁ@($)> e~ ix(@) /v

we get V(¢p) = V(p), and (exercise):

1 2
‘Du¢|2 — 5

. 1 . 1
Oup + gy (A/L — q—vﬁux) + 'L\/iqv (Au — q_va”X>

| |
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f Spontaneous Breaking of Local Symmetries ﬂ

Consider instead: £ = (D"¢)*(D,¢) — V(¢) — 1 F?

L 1 :
Under redefinition: ¢ — (v + ﬁgp(x)> e~ ix(@) /v

we get V(¢p) = V(p), and (exercise):

1 2
‘Du¢|2 — 5

. 1 . 1
Oup + gy (Au — q_va”X> + iV 2qu (Au — q_va“X>

Now, a gauge transformation allows to remove the Goldstone boson:

B, = A, — 20,x  andone gets the mass term:  ¢*v*B,, B*

. |
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f Spontaneous Breaking of Local Symmetries ﬂ

Consider instead: £ = (D"¢)*(D,¢) — V(¢) — 1 F?

L 1 :
Under redefinition: ¢ — (v + —gp(x)) e~ ix(@) /v

V2
we get V(¢p) = V(p), and (exercise):

1 2
‘Du¢|2 — 5

. 1 . 1
Oup + gy (Au — q_va”X> + iV 2qu (Au — q_va“X>

Now, a gauge transformation allows to remove the Goldstone boson:

B, = A, — 20,x  andone gets the mass term:  ¢*v*B,, B*

Lesson |I: Under Spontaneous Breaking gauge fields acquire mass by
absorbing the Goldstone bosons.

This is called The Higgs Mechanism (Anderson, Kibble, Guralnik, Hagen, Brout, and

LEngIert) J
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f Higgs Mechanism T

Mass generation in non Abelian gauge theories follows a similar path

Consider again a given representation of scalar fields, with
D,® = (0, +igT,A},)®

It is easy to see that the sole contribution of vacuum, (®), that comes from
the kinetic term, |D,®|*, generates the mass term

G (T (@) (T,(®)) A2 AP

. |
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f Higgs Mechanism T

Mass generation in non Abelian gauge theories follows a similar path

Consider again a given representation of scalar fields, with
D,® = (0, +igT,A},)®

It is easy to see that the sole contribution of vacuum, (®), that comes from
the kinetic term, |D,®|*, generates the mass term

G (T (@) (T,(®)) A2 AP

® In general, only some field combinations would get mass:
® All gauge fields associated to 7,, such that 7, (®) = 0, remain massless
= Those T,’s generate the residual symmetry (unbroken): G’ C G.

® To get the massive ones we must diagonalize m2, = g2 (T,,(®))" (T}(®))
Lets explore an interesting case...

. |
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o Spontaneous Breaking ofU (2) x U(1) o

Consider the Lagrangian

Lo =0'®T(2)0,0(x) + 12 0Td — %(CIDTCID)2

where ® the scalar doublet: d = ( zl )
2

The model is invariant under global SU (2):

- _ 1
b — WY Tad with Ty = 5% a=1,2,3

. |
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o Spontaneous Breaking ofU (2) x U(1) |

Consider the Lagrangian

Lo =0'®T(2)0,0(x) + 12 0Td — %(CIDTCID)2

where @ the scalar doublet: P = ( z; )
The model is invariant under global SU (2):
O — e 9P with Ty = %aa a=1,2,3
The local theory  9,® — D,® = (0, + igAlr,) ® si (D)= ( S )
Thus: [D,(®)]? = ¢*( 0 w )TaTb( S )AZAb“
B ACE ){Ta,fb}< ’ )AZAW = CoP AL A

‘ All gauge fields acquire mass \
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o Spontaneous Breaking ofU (2) x U(1) o

Consider the Lagrangian

Lo =0'®T(2)0,0(x) + 12 0Td — %(CIDTCID)2

where ® the scalar doublet: d = ( zl )
2

The model is invariant under global SU (2):

- _ 1
b — WY Tad with Ty = 5% a=1,2,3

However, SU(2) is not all the symmetry. Thereisalso U(1): & — ¢ 95

. |
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o Spontaneous Breaking ofU (2) x U(1) o

Consider the Lagrangian

Lo =0'®T(2)0,0(x) + 12 0Td — %(CIDTCID)2

where & the scalar doublet: d = ( zl )
2
The model is invariant under global SU (2):
o _ 1
b — Y T2 P with Ty = iaa a=1,2,3

However, SU(2) is not all the symmetry. Thereisalso U(1): & — ¢ 95
For the local theory we the then get: D, ® = (9, + igA%7, +ig' 5B,) ®

1 1 0
= |D, (®)|* = ( 0 w ) (gAZTa—I— §g/Bu> (gAb“Tb—I— ig’B“) ( )

(%
2

L B UZ [92 <A}L)2 +9° (AZ)2 + (gAfL - QIBM)ﬂ (exercise)J
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o Spontaneous Breaking ofU (2) x U(1) |

2

T () g () (9% — g/ B

we then have:
® Three massive gauge bosons:

1 . gu
W+ = —_ (AL =42 with mass  my = 2—
g V2 ( wF M) V2
1 v
Zy = A —¢'B with mass myz = /g% + ¢?—
H /92 _'_9,2 (g v 9 N) Z g g \/§

(For weak interactions PDG (2008):
my = 80.3985 £+ 0.025 GeV'; myz = 91.1876 4+ 0.0021 GeV).

®» A massless boson (the photon)

Ay = > (Q/Ai +9B,)

a N
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o Spontaneous Breaking ofU (2) x U(1) |

It is convenient to define the mixing:

/

cos Oy = J _ tw : sin Oy = g
/g2 + g/2 mz /92 + 9/2
. Z cosbyw —sinfOy A3
Write. —
1o write < A ) ( sin By cos Oy ) ( B )

| |
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o Spontaneous Breaking ofU (2) x U(1) o

It is convenient to define the mixing:

/

cos Oy = J _ tw : sin Oy = g
/92 + g/2 mz /92 + g/2
. Z cosbyw —sinfOy A3
Write. —
1o write < A ) ( sin Oy cosOw > ( B )

Finally, we write the covariant derivative in terms of massive fields:

exercise: From D, = 0, +1igA%T, +ig'3Y B,  and defining
/

1
Q=T+ -Y y e = 99 = gsin Oy = ¢’ cos Oy

2 /gz —|—g’2
we get:

. 9 o . g : .
Dy =0, + Z\ﬁ (W:TJF + W, T ) + ZCOSQW Zy, (T3 — sin” 0w Q) + e, Q

vahere T+ =T 4+ 472,

Three parameters: e; Oy ; myy.
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Chapter 3

Basics

of the

Electroweak Theory




f The Standard Model for Leptons ﬁ

Let us consider a single lepton flavor: e, v..

L =1ier, der, + iVer, Juer, + 1€R depr
where by construction we assume no vp.

® ¢; and v, are naturally arranged in a SU(2) doublet:
L = ( Vel ) = L =1iLJL+iég Jer

er IS a singlet, so, it should have not weak interactions, as required.
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f The Standard Model for Leptons ﬁ

Let us consider a single lepton flavor: e, v..

L =1ier, der, + iVer, Juer, + 1€R depr
where by construction we assume no vp.

® ¢; and v, are naturally arranged in a SU(2) doublet:
L = ( Vel ) = L =1iLJL+iég Jer

er IS a singlet, so, it should have not weak interactions, as required.

® Thereis also a U(1) -phase change- symmetry. The associated charge
Is called hypercharge (Y). Thus, we consider SU(2);, x U(1)y.
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f The Standard Model for Leptons ﬁ

Let us consider a single lepton flavor: e, v..

L =1ier, der, + iVer, Juer, + 1€R depr
where by construction we assume no vp.

® ¢; and v, are naturally arranged in a SU(2) doublet:
L = ( Vel ) = L =1iLJL+iég Jer

er IS a singlet, so, it should have not weak interactions, as required.

® Thereis also a U(1) -phase change- symmetry. The associated charge
Is called hypercharge (Y). Thus, we consider SU(2);, x U(1)y.

® To fix the hypercharge, Y, we use the electric charge: (@ =15+ %Y.
L(12,Y = —1)

T er(1,Y = —2)
| |
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f The Standard Model for Leptons

® The covariant derivatives for L(2,—1) and e (1, —2):

D,L
DMGR

thus, the local theory

. ra 1
- (@L +igAj 1o — 29/53u> L
= (0, —ig'By)er

L.=1iLy"D,L+iery" D, er.

|
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f The Standard Model for Leptons ﬁ

® The covariant derivatives for L(2,—1) and e (1, —2):

1
D, L = (@L +ig A To — ig/53u> L

D,ueR — (au—’ig,B,u) €R

thus, the local theory L. =4iL~y"D,L + iery" D, .ex.
® For SSB we "minimally" have to consider a scalar doublet :

@ =)

Thus: ®(2,Y =1). = D,® = (9, +igAlir, +ig'5B,) P
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f The Standard Model for Leptons ﬁ

® The covariant derivatives for L(2,—1) and e (1, —2):

1
D, L = (@L +ig A To — ig/53u> L
D,ueR — (8M — 'ig'BM) €R

thus, the local theory L. =4iL~y"D,L + iery" D, .ex.
® For SSB we "minimally" have to consider a scalar doublet :

@ =)

Thus: ®(2,Y =1). = D,® = (9, +igAlir, +ig'5B,) P

® Yukawa couplings hL®er + h.c.= m.erer ; wWhere m, = h{®) = hv
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f The Standard Model for Leptons ﬁ

® The covariant derivatives for L(2,—1) and e (1, —2):

1
D, L = (@L +ig A To — ig/53u> L
D,ueR — (8M — 'ig'BM) €R

thus, the local theory L. =4iL~y"D,L + iery" D, .ex.
® For SSB we "minimally" have to consider a scalar doublet :

@ =)

Thus: ®(2,Y =1). = D,® = (9, +igAlir, +ig'5B,) P
® Yukawa couplings hL®er + h.c.= m.erer ; wWhere m, = h{®) = hv

® Total Lagrangian Lyws=Ly+ Lo + Lyy + Ly
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f The Standard Model for Leptons —‘

® Total Lagrangian Lyws =L;+ Le + Ly + Ly

For the three families: L. ; L, ;L:;er; tr;:Tr;

L= Z ) [i(}/’uDuLg —I—ER’Y’UJDMER}
b=e,u,T

| |
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f The Standard Model for Leptons —‘

® Total Lagrangian Lyws =L;+ Le + Ly + Ly

For the three families: L. ; L, ;L:;er; tr;:Tr;

L= Z ) [i(}/’uDuLg —I—ER’Y’UJDMER}
b=e,u,T

A

Lo = (D*®)(D,®) + 12 0Td — Z(<1>T<1>)2

| |
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f The Standard Model for Leptons _\

® Total Lagrangian Lyws =L;+ Le + Ly + Ly

For the three families: L. ; L, ;L:;er; tr;:Tr;

Lo= Y  i[Ley"DuLe+ lpy" Dyl

b=e,u,T
f 251® _ 2 (BTD)2
Lo = (D'®) (D, @) + u*@'® — 7 ($12)
1 a Tapy 1 U
;CYM — _ZFILLVF - ZB'IU/B

where Ff, = 0,A% —0,A% — ge** AP A, and By, =0d,B, —0,B,

pttv o
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f The Standard Model for Leptons _\

® Total Lagrangian Lyws =L;+ Le + Ly + Ly

For the three families: L. ; L, ;L:;er; tr;:Tr;

Lo= Y  i[Ley"DuLe+ lpy" Dyl

b=e,u,T
i 2t d N atd2
Lo = (D"0) (D, ®) + p?®id — 7(27P)
1 a auv 1 jn%
;CYM — _ZFILLVF - ZB'IU/B
where F, = 0,A% — 0, A% — geabCAZAfj , and B,,=09,B,—0,B,
FinaIIy: Ly = Z [hgl_;gq)fR + h.c]
b=e,u,T

SSB: (®) ...

| |
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f The Standard Model for Leptons —‘

® Next, for the spontaneous breaking:

Massive Gauge Bosons:

Z, = (cos HWAi — sin QWBM) A, = (sin HWAi + cos HWBM)

| |
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f The Standard Model for Leptons —‘

® Next, for the spontaneous breaking:

Massive Gauge Bosons:

Z, = (cos HWAi — sin QWBM) A, = (sin HWAi + cos HWBM)
Remainder:  ¢gA%T, +¢'5Y B,  alsogoes as

7 (WHTH + W, T™) + COSQQW Z, (T5 — sin O Q) + €A, Q

| |
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f Charged Currents —‘

5% (WFT* + W, T~) = Only L, will coupled to W=,

Interaction Lagrangian:

,CC — —iW:I_z[}/“ (7’1 + ’L"TQ) Lg + h.c

V2

| |
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f Charged Currents —‘

5% (WFT* + W, T~) = Only L, will coupled to W=,

Interaction Lagrangian:

,CC — —iW:I_z[}/“ (7’1 + ’L"TQ) Lg + h.c

V2

- 1
N — Lo=—2w (o eL)w(g 0)(”;;)%.0

| |
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f Charged Currents _\

5% (WFT* + W, T~) = Only L, will coupled to W=,

Interaction Lagrangian:

,CC — —%W:L[}/“ (7’1 + ’iTQ) Lg + h.c
T —l . g + (= 0 W O ]- VeL
1 — 20'1 — EC — —EWM (VQL KL)’}/ 0 0 €L —|—hC
— Lo = —%WJ (DoY) + h.c = —%Wjjg + h.c

where gt = Uy (1 — v5)e + vy (1 — v5)pu + vy (1 — v5)7

| |
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f Charged Currents _\

— Lo = —iW; (Dep ") + h.c = —LW:jg + h.c

V2 2v/2

where  j# = D" (1 — 5)e 4+ D,y (1 — y5)p + Dy (1 — 5) 7

Q* < My, = Lwr~MyW, W — (Wt + W, k]

2f

The equation of motion for W~ goes then as: My, W, ~ %

2 G 2
— Ly ~ ——L it — £__J

&
‘ 82, le Jen V2 8MZ, 8M2,sin? Oy \
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f Neutral Currents —\

Next, consider: —9— 7, (T5 —sin” 0w Q) + eA,Q

cos Ow

| |
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f Neutral Currents T

Next, consider: —9— 7, (T5 —sin” 0w Q) + eA,Q

cos Ow

Since  L,(2,-1); (p(1,-2) y Q=Ts5+1iY:
—> The electromagnetic interaction:

,C]_L:;]W:EZA,u (ZL’Y’UJEL -+ gRﬁ/MfR) :EEAM Z’yuf
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f Neutral Currents —\

Next, consider: =2 (Ts — sin® 0w Q) + eA,Q
Since  L,(2,-1); (p(1,-2) y Q=Ts5+1iY:
—> The electromagnetic interaction:

,C]_L:;]W:EZA,u (ZL’Y’UJEL -+ ZRWF%R) :EEAM Z’yuf

Lrym=eA,Ju, =  Joy =evte+ vyt + TP

| |
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f Neutral Currents —\

Next, consider: =2 (Ts — sin® 0w Q) + eA,Q
Z couplings
1
g = = 0 ) 0 0
p— — Z L 2 _ ML
b7 cos Oy “{EKO %> Smew<0 —1>]7 e

—ZR (SiIl2 er) ’)/’MKR}
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f Neutral Currents _\

Next, consider: =2 (Ts — sin® 0w Q) + eA,Q
Z couplings
1
g = = 0 ) 0 0
p— — Z L 2 _ ML
b7 cos Oy “{EKO %> Smew<0 —1>]W e

—ER (SiIl2 er) ’)/’MKR}

1 1 ] L
L7 = _CQSQQW ZM liﬂgL’yMVgL -+ (—5 -+ sin? Hw> byl + sin? waR’yufR]
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f Neutral Currents _\

1 1 _ _
Lr;=— g Z,u —vp Y v, + ——+sin29w fL’}/MfL—FSiIlQ(gwfR’}/MfR
cos Oy 2 2
Neutral currents: Lz = — ;g7 Zu (jf,f,,/ + jf,f,e) where

gl =5 [Py (1 = v5)ve + 0y (1 — y5)vp + Ury* (1 — 5) vy

S
|
~
|

—_

3 H&) (1l —s)e+ arH (1 — )+ 7y (1 — 5)7]

+& ey (1 +vs5)e + gy (1 +v5)p + Ty (1 + 5) 7]
f = sin2 ‘9W

| |
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f Neutral Currents —\

Neutral currents: £ = — %7, (jt, +ji,) where

gh =5 e (1 = v5)ve + 7y (1 — v5)vp + 29H (1 — 5 )07

()
3T
[N
|
o
DN
+
M
N——"
Y
)
p~
—
|
)
SL
o
+
I
)
p~
T
|
)
O‘V
=
+
|l
)
=
—
|
)
<
I

Gr . .
V€ — Vu€ Legr = _E i

where  jj' = 7" 5 (1 — 7" v + Iy (v — cars)l

G2 s 14 . :
£2 2 sin® Oy — sin? Oy + x]

. sin” Gy = 0.2324 £ 0.0083
\_0(17“6 —> ﬁ,ue) — G;: > _% sin4 HW — %Sin2 HW -+ %] J
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f Adding Quarks to the Model _\

® Quarks have both weak and color interactions [unbroken QCD SU (3)].
® Atlow energy the model should describe beta decay: n — pev

Elementary Particles o
$» Hadron Model indicates:

p= (uud); n = (udd)

Electric charges: «(2/3) ; d(—1/3)
Three Colors: ¢, ; o =1,2,3.
Three Families: (u,d) ; (c,s); (t,b).

Electroweak Model includes:

]_ Un 1L 4 2
2, — — ’ 3 o, 17_ 3 dOéi 17__
‘ o(23),, = Lim )+ weon(5) ¢ dosn(15) \
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f Adding Quarks to the Model ﬁ

1 U 4L 4 2
2, - — , : a,t 17_ 3 da o, L,—<
Q<,3)aiL (da,iL ) | U,R( 3> R( 3)

)

Covariant Derivatives for weak interactions:

1
D,Qir. = <8 +ng“Ta+zg B)QzL
.2
D,urp = 0, +1ig §Bu UiR
o1
D,udz'R — 8M—zg gBM dz’R

. |
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f Adding Quarks to the Model ﬁ

1 Un 1L 4 2
2, — = ’ 3 oLl 17_ 3 doéi 17__
Q<,3>aiL (da,iL>7 U’R( 3> ,R< 3)

)

Covariant Derivatives for weak interactions:

1
D,Qir. = <0 +ng“Ta+zg B)QzL
.2
D,urp = 0, +1ig §Bu UiR
o1
D,udz'R — 8M—zg gBM d@'R

More convenient:

g
cos Oy

. g — = :
DM:(?FHLZE (WriTH+W,T7) +i

. |
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f Adding Quarks to the Model _\

More convenient:

Dy =0, +i-2= (WITH + W, T7) +i—2—27, (Ts — sin® 0 Q) + ie4,Q

V2 cos Oy
After the algebra (exercise):
Lint = —eJV A, — L (Wo gt +he) — ——— 27, "
q-TH 2\/§ n - c,q Sln(QHW) K< n,q
1 - i _ 9 i .
) = 3 (dy*d + sv*s + by*b) — 3 (uyHu + eyte + tyHt)

J&, = uypd+coyps+iyrh v =7 (1 —=5); vg =" (1 +s)
JE, = (53— 38 [wnfu+eyfe+ vt — 2€ [uvhu + evhe + tygt]

+ (—% -+ %f) [cify‘L‘d + 55 s + Efy’lfb} -+ %f [ci*yﬁd + §vps + B'yﬁb] J

|
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f Yukawa Couplings: Masses and Mixings —‘

hgg/EECM’R can always be written such that: hyy = hydper = my = hye(P)

| |
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f Yukawa Couplings: Masses and Mixings —‘

That is not the case for the quark sector!!:

FarQar®dyr + hapQar, Pupr

where ® is the charged conjugated field, ® = ioy®*;

| |
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f Yukawa Couplings: Masses and Mixings —‘

That is not the case for the quark sector!!:

FarQar®dyr + hapQar, Pupr

where @ is the charged conjugated field, ® = io,®*; setting in (®) = < S )

daL (Md)ab daR + UqL (Mu)ab UaR

where (Md)ab = 'Ufab ; (Mu>ab = vhyp

| |
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f Yukawa Couplings: Masses and Mixings —‘

That is not the case for the quark sector!!:

FarQar®dyr + hapQar, Pupr

where @ is the charged conjugated field, ® = io,®*; setting in (®) = < S )

daL (Md)ab daR + UqL (Mu)ab UaR

where (Md)ab = 'Ufab ; (Mu>ab = vhyp
To diagonalize: M2, = M, - M| — (Mz;),. —=UL M, - Ul
Similarly: M3, = My M} — (M3;) . =V - M3, - V]

| |
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f Yukawa Couplings: Masses and Mixings —‘

That is not the case for the quark sector!!:

FarQar®dyr + hapQar, Pupr

where @ is the charged conjugated field, ® = io,®*; setting in (®) = < S )

daL (Md)ab daR + UqL (Mu)ab UaR

where (Md)ab = 'Ufab ; (Mu>ab = vhyp
To diagonalize: M2, = M, - M| — (Mz;),. —=UL M, - Ul
Similarly: M3, = My M} — (M3;) . =V - M3, - V]

Mass eigenstates: U, = (UL) yy " Uar 3 da,r. = (VL),, - dar
\_ Wytary"dar, = Wyitiar (Uck ) 457" dpL Uckm = ULVLT J
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Yukawa Couplings: Masses and Mixings _\

Uckym =

Uud Uus Uub
Ucd ch Ucb
Uga Uis U

0.97419(22)  0.2257(10)

0.2256(10)

0.00874(735)  0.0407(10)

Standard Parameterization: Three angles and one phase:

Uckyv =

C12C13

—812C23 — C12823513€"7
;
$12593 — C12C23513€"7

(912 = (9() ~ 12.9°; (923 ~ 2.4°

Wolfenstein Parameterization:

|

Uckyv =

1— A2
—A
AN (1 — p —in)

512€C13

C12C23 — S12823513€"%
;
—C12823 — S12C23513€"7

013 ~0.2°; ©~59°+13

A
1— )2
—AN?

AX(p —in)
AN? :
1

0.00359(16)

0.97334(23) 0.0415(19)

0.9990(+43)

813€_Z(’0
§23C13 ;
C23C13

A= 0.2257 ;
A =0.814;
p=0.135;

n = 0.349 J
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f Counting Parameters ﬁ

. . 2 .
3: Coupling constants: g ; ¢’ ; gs or equivalently oy = 4= ; agar ; sin® Oy .

1: Number of Families = 3.

9. Fermion masses (Yukawa couplings).

4. Uc kv parameters.

2: Parameters in the Higgs sector: 2 ; A ;orequivalently mpyg; My.

Total: 19 free parameters

. |
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f Counting Parameters ﬁ

2
3: Coupling constants: g ; ¢’ ; gs or equivalently oy = 4= ; agar ; sin® Oy .
1. Number of Families = 3.

9. Fermion masses (Yukawa couplings).

4. Uc kv parameters.

2: Parameters in the Higgs sector: 2 ; A ;orequivalently mpyg; My.

Total: 19 free parameters

Additionally:
- Agep
- Ogcp: QCD global anomaly 9,5 = 25 g2F - F

. |
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Final Lesson: Model Building —‘

General Lessons for building models:

K

9

o

°

© o o o

Choose a symmetry. vgr. a gauge group G
Choose proper representations that accommodate fermion fields

Take an appropriated number of scalar multiplets in an adequate
representations that provide the required SSB.

Write down the locally invariant Lagrangian. Include all renormalizable
terms that are permitted by the symmetry: L =L, + Lo + Lyym + Ly

Determine the vacuum configuration that breaks the symmetry
Insert vev and diagonalize mass matrices.
Finally, rewrite the Lagrangian in terms of mass eigenstates.

Put your model to the test.

|
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Chapter 4

Beyond Standard Model?




f Open Questions ﬁ

® The Gauge problem: G5 = SU(3) x SU(2) x U(1) where g5 # g # ¢
from phenomenological considerations.

Partial Unification: U(1)g C SU(2), x U(l)y: Q=T+ Y

Color remains as a separated sector: SU (3)

o B 5 1
$ Charge Quantization: Why hypercharges are as they are? ¢ = 1,5, —3

. |
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f Open Questions ﬂ

® The Gauge problem: G5 = SU(3) x SU(2) x U(1) where g, # g # ¢’
from phenomenological considerations.

Partial Unification: U(1)g C SU(2), x U(l)y: Q=T+ Y

Color remains as a separated sector: SU (3)

® cCharge Quantization: Why hypercharges are as they are? ¢ = +1, %, —%
80 — 7T v T * 1 " 1 ™ 1 ™ T ™ 1T ™ T ' T ° ‘. RGE

doy; 1 2

T I 4 bio? for a; = Ii

dlnpy 27 47

Moy ~ 1016 GeV

Needs supersymmetry

o 2 4 6 8 10 12 14 16 18 20 A unique simple gauge group?...

L log,, 1 (GeV) SU(5), SO(10), Eg . ..? J
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f Open Questions —‘

® The Flavor Problem

FERMIONS®
‘ First Second Third
10° Generation Gengration Generation

Top quark Higgs
10° i vf-i My > Mg > My

Hﬂﬂﬂﬂs—‘ ® There is no a priori reason for
fermion mass spectrum.

-
10" Bottom quark In general Mdown > mup
Eharta:ark
uli
g i but m, > mgy.
] o rk
E ” H ﬁ trange qua ]
c il
N Is there a Flavor symmetry”~
= 10 - -
: ® Neutrinos are massive !
_E Up quark
D | - S
H Electron Is neutrino Dirac or Majorana”
S T T L MAsSLESS s 1 ~
o . BOSONS LONg + —Mp Nl?i Np
Muon- Q 2
| Aeutring Tau- j Photon
[n"'i Electron. Q— neutring
L ,- “"fi”“ @ cuon See-saw m, ~ m7 /Mg \
10—
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f Open Questions ﬁ
® The Flavor Problem: Neutrino Oscillations

Compelling evidence that neutrinos oscillate

o Solar neutrinos (Clorine, Gallex, Kamiokande, SAGE,
SuperKamiokande, SNO)

Ve %V/,L7 VT

# Atmospheric neutrinos (Kamiokande, MACRO, Soudan,
SuperKamiokande)

# Accelerator and Power Plant neutrinos (KamLAND, K2K, CHOOZ,
Palo-Verde, MINOS, MiniBoon,...), confirm evidence.

. |
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f Open Questions ﬁ

® The Flavor Problem: Neutrino Oscillations

See-saw: Magvavs ; M ~ -mE My "mp non diagonal.

Vg, :ZU(M'VZ' for a=e um1=1,2,3

)

where U = Upyns - K ; K = diag{1,e*1, "2}
C12C13 $12C13 s13e” ¥
Upymns = | —s12C23 — €12823513€*7  c12C23 — S12593513€"7 523C13 ;
$12823 — C12C23513€'Y  —C12523 — S12C23513€'7  C23C13

Flavor oscillations

x Ama
Pa5:‘<ya‘V5(L)>‘ _5045_42 Uﬁb bUﬂa81n2 4EbL

. |
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f Open Questions —‘

® The Flavor Problem: Neutrino Oscillations

Flavor oscillations

Amab

L
41K

Pog = |(valvg(L)]? = 6ap — 4> Ui, UsULUj, sin2
a<b

® Solarscale Am?2 = Am?2, =7.61T53 x 107° eV?;

® ATMscale AmZp,, = |Amas|? & |Amys)? =2.4+£0.3 x 1072 eV?,
» Mixings

sin” f, = sin” 615 = 0.32 T0°0)

sin QATM — sin 923 = 0.5 +8 %g

sin® 013 < 0.033
\_.D Phases had not been measured yet J
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f Open Questions _\
® The Higgs Problem
» Higgs interactions: TA\(®T®)? + A\ Pipg
® m? in unstable (Hierarchy Problem)

| |
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f Open Questions —‘

® The Higgs Problem
» Higgs interactions: TA\(®T®)? + A\ Pipg
® m? in unstable (Hierarchy Problem)

T
— 5m2 ~ A2\ — f?)

What should be A?

® See-saw mass scale: Mp ~ 10" GeV
o GUT scale: Moy = 10'% GeV
o Gravity scale: Mp =2 x 10Y GeV

| |
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f Open Questions —‘

® The Higgs Problem
» Higgs interactions: TA\(®T®)? + A\ Pipg
® m? in unstable (Hierarchy Problem)

T
— 5m2 ~ A2\ — f?)

What should be A?

® See-saw mass scale: Mg ~ 103 GeV SUSY: A= f?
o GUT scale: Meayr = 1016 GeV |
» Gravity scale: Mp =2 x 10! GeV New TeV Physics?

| |
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f Open Questions —‘

® The Higgs Problem
» Higgs interactions: TA\(®T®)? + A\ Pipg
® m? in unstable (Hierarchy Problem)

T
— 5m2 ~ A2\ — f?)

What should be A?

# See-saw mass scale: My ~ 101 GeV SUSY: A= f?
o GUT scale: Moy = 10'% GeV |

» Gravity scale: Mp =2 x 10! GeV New TeV Physics?
Is there more than one Higgs? Is it fundamental? wait for LHC.

| |
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f Open Questions —‘

® The Higgs Problem
» Higgs interactions: TA\(®T®)? + A\ Pipg
® m? in unstable (Hierarchy Problem)

T
— 5m2 ~ A2\ — f?)

What should be A?

# See-saw mass scale: My ~ 101 GeV SUSY: A= f?
o GUT scale: Moy = 10'% GeV |

» Gravity scale: Mp =2 x 10! GeV New TeV Physics?
Is there more than one Higgs? Is it fundamental? wait for LHC.

® The Gravity Problem: How to include Gravity?

| |
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f Early Universe _\

Cosmological Model: SM + GR (FRW Model)
» Matter Content

#» Known Standard matter: =~ 3%

o Dark Matter: ~ 27% perhaps in LHC

o Dark Energy: ~ 70%

| |
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f Early Universe _\

Cosmological Model: SM + GR (FRW Model)
» Matter Content

# Known Standard matter: = 3%
o Dark Matter: ~ 27% perhaps in LHC
o Dark Energy: ~ 70%
® Other Initial conditions for BBN
# Matter asymmetry: ng ~ 10710
— C and CP violation; B or L violation
» Flatness problem: Inflation

— Inflaton: ¢ ; m, < 10" GeV A new sector?

| |
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f Concluding Remark ﬂ

“There are too many points at which the conven-
tional picture may be wrong or incomplete. The
SU(3). x SU(2);, x U(1)y gauge theory with
three families Is certainly a good beginning, not

to accept but to attack, and exploit.”
Sheldon Lee Glashow, 1979

The Standard Model is perhaps just one more step on our way
towards a better and deeper understanding of Nature

. |
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