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Chapter 1

Introduction.

Weak interactions
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Beta Decay

Primary spectrum of the emitted electron
is continuos. Chadwick – 1914

History of weak interactions goes back
to the discovery of radioactivity by Bec-
querel -1896-.

beta decay: a nucleus emits an electron
increasing its charge:

64Cu→ 64Zn+ e−

However: E64Cu 6= E64Zn + Ee
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Beta Decay

Primary spectrum of the emitted electron
is continuos. Chadwick – 1914

History of weak interactions goes back
to the discovery of radioactivity by Bec-
querel -1896-.

beta decay: a nucleus emits an electron
increasing its charge:

64Cu→ 64Zn+ e−

However: E64Cu 6= E64Zn + Ee

In 1931 Pauli "...as a desperate remedy to save the principle of energy con-
servation..." postulated that a massless, chargeless and weakly interacting
particle was emitted in the beta decay process.

The new particle was named "neutrino" by Fermi in 1934, after the discovery
of the neutron by Chadwick (1932).
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Beta Decay

Primary spectrum of the emitted electron
is continuos. Chadwick – 1914

History of weak interactions goes back
to the discovery of radioactivity by Bec-
querel -1896-.

beta decay: a nucleus emits an electron
increasing its charge:

64Cu→ 64Zn+ e−

However: E64Cu 6= E64Zn + Ee

In 1931 Pauli "...as a desperate remedy to save the principle of energy con-
servation..." postulated that a massless, chargeless and weakly interacting
particle was emitted in the beta decay process.

The new particle was named "neutrino" by Fermi in 1934, after the discovery
of the neutron by Chadwick (1932).

Pauli new particle was first detected in 1956 by Cowan y Reines comming
from a nuclear reactor at Savannah River, South Carolina.
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Beta Decay

Beta decay violates parity.

Only left components of both, the elec-
tron and the neutrino, are involved by the
interaction that mediates beta decay.

Electroweak Theory Basics – p.5/36



Fermi Theory

With the discovery of the neutron it was suggested that beta decay was
actually produced by the process: n→ p+ e− + ν̄e

Nevertheless, the characteristic life times range from few minutes to years:
τn ≈ 15 min vs. τπ0→γγ ≈ 10−16 s.

Thus, the interaction mediating beta decay has to be weaker than
electromagnetism.
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Fermi Theory

With the discovery of the neutron it was suggested that beta decay was
actually produced by the process: n→ p+ e− + ν̄e

Nevertheless, the characteristic life times range from few minutes to years:
τn ≈ 15 min vs. τπ0→γγ ≈ 10−16 s.

Thus, the interaction mediating beta decay has to be weaker than
electromagnetism.

n

e−
p

e
−

J |+

J

In 1934 Enrico Fermi presented an effective theory
that describes beta decay based on the Hamilto-
nian (in natural units)

H =
GF√

2
J†
µJ

µ

with the charged courrent J†
µ = p̄γµn+ ν̄eγµe

GF = 1.16637(1) × 10−5 GeV −2

Parity violation requires the V-A current: γµ → γµ(1 − γ5)
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Universality: Pion decay

π+ → µ+νµ; π− → µ−ν̄µ; Γ = 2.53 × 10−14 MeV .

Illustrate parity violation and Universality of weak interactions.
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Universality: Pion decay

π+ → µ+νµ; π− → µ−ν̄µ; Γ = 2.53 × 10−14 MeV .

Illustrate parity violation and Universality of weak interactions.

Fermi theory is easily extended to this case:

jµℓ = ēγµ(1 − γ5)νe + µ̄γµ(1 − γ5)νµ + τ̄ γµ(1 − γ5)ντ

H = απ

2

[

jµℓ ∂µΦπ + jµ†ℓ ∂µΦ
†
π

]

To the lower order: Γπ→ℓνℓ
=

α2

π

4π (1 − vℓ) p
2
ℓEℓ ;

therefore: τ(π→µνµ)
τ(π→eνe) =

m2

e(m
2

π−m2

e)
2

m2
µ(m2

π−m2
µ)

2 = 1.28 × 10−4

From observations: Γπ→eνe = 3.11 × 10−18 MeV ; Γπ→µνµ = 2.53 × 10−14 MeV ;
thus απ = 2.09 × 10−9 MeV −1 ;

and one gets Γτ→πντ =
α

2

π
32π

m3
τ
[1 − (mπ/mτ )2]2 = 2.42 × 10−10MeV

vs. (2.6 ± 0.1) × 10−10MeV
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Muon decay

The analysis of the decays µ− → e−ν̄eνµ ; and µ+ → e+νeν̄µ ; has
played an important role in the understanding of weak interactipons.

From : H =
GF√

2
j†ℓνJ

ν
ℓ one gets

1

τ(µ→ eνeνµ)
≈
m5
µG

2
F

192π3

The measured life time τµ = (2.19703 ± 0.00004) × 10−6 s

provides one of the best stimates for GF
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Muon decay

The analysis of the decays µ− → e−ν̄eνµ ; and µ+ → e+νeν̄µ ; has
played an important role in the understanding of weak interactipons.

From : H =
GF√

2
j†ℓνJ

ν
ℓ one gets

1

τ(µ→ eνeνµ)
≈
m5
µG

2
F

192π3

The measured life time τµ = (2.19703 ± 0.00004) × 10−6 s

provides one of the best stimates for GF

From the same theory one also gets good stimates for other processes, as

τ → eν̄eντ and µ→ eν̄eνµ, with the ratio τ(τ→eν̄eντ )
τ(µ→eν̄eνµ) ≈ (

mµ

mτ
)5.

Mass ratio gives 7.43 × 10−7 ; vs. the observed 7.36 × 10−7

Furthermore:

K+ → µ+νµ ; π0eνe ; . . .

Hyperones decay: Λ → pπ−; Σ− → nπ−; Σ+ → Λe+νe−;. . .

Neutrino scattering: νµe→ νµe; νµn→ µp; νµn→ µX;. . .
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From Fermi Theory to the Standard Model

Although successful, Fermi theory is incomplete. Consider νee→ νee

e

e−

e

e−

H = GF√
2
j†eµj

µ
e ; indicates that σ ∼ G2

F s
π ; s = E2

cm.

Unitarity requires that σ < 16π
s .

⇒ Thus, at 1
2Ecm >

√

π
GF

∼ 500 GeV ; σ violates unitarity
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From Fermi Theory to the Standard Model

Although successful, Fermi theory is incomplete. Consider νee→ νee

e

e−

e

e−

H = GF√
2
j†eµj

µ
e ; indicates that σ ∼ G2

F s
π ; s = E2

cm.

Unitarity requires that σ < 16π
s .

⇒ Thus, at 1
2Ecm >

√

π
GF

∼ 500 GeV ; σ violates unitarity

e

e

e

Usually, non unitarity of the amplitude in Born approxima-
tion is reestablished by high order corrections, however,
Fermi theory involves divergent diagrams in the second
order.

Problem: we deal with a non non renormalizable theory:
GF is dimensionful.
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From Fermi Theory to the Standard Model

n

p

W−

e

e−

Z

e−

e−

Yukawa (1935) suggested the concept of interme-
diary bosons. An idea retaken by Schwinger in
1957.

Assuming a massive boson, W±, in the low en-
ergy regime, m2

W ≫ Q2 ; one identifies GF√
2

∼
g2

8m2
w

. Moreover σ will be well behaved at high

energies.

Nevertheless in ee → WW ; processes σ violates
unitarity again unless a neutral current is included.

1961: Glashow developed the SU(2) × U(1) gauge model including QED.

Standard Model for leptons arose finally after adding the Higgs mechanism –
Weinberg (1967) y Salam (1968)–
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From Fermi Theory to the Standard Model

GIM mechanism allowed to extend the model
to include quarks.

Currently we know there are three families of
fundamental fermions.

’t Hoof & Veltman proved renormalizability
(1971).

W and Z where first observed in CERN.

High precision physics has been provided
since then by LEP (CERN) and SLC (SLAC) .

The Higgs remains elusive... waiting for LHC
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Chapter 2

A Brief on Gauge Field Theories
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Lagrangian Densities

Fundamental quantity for any QFT is the action

S =

∫

d4x L(x) ,

where the Lagrangian density L is a Poincaré invariant, local and real
function of fields and their derivatives, with non explicit dependence on space
coordinates.

Complex scalar field: Lφ = ∂µφ∗(x)∂µφ(x) −m2φ∗φ− λ
4 (φ∗φ)2

EM field: LEM = − 1
4FµνF

µν ; where Fµν = ∂µAν − ∂νAµ

Fermion field: Lψ = ψ̄ (iγµ∂µ −m)ψ
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Lagrangian Densities

Remainder on fermion theory:

ψ is solution to (iγµ∂µ −m)ψ = 0 ; ψ̄ = ψ†γ0.

Dirac matrices obey Clifford algebra: {γµ, γν} = 2ηµν

Chiral representation:

γ0 =

(

0 1

1 0

)

~γ =

(

0 ~σ

−~σ 0

)

where ~σ = (σ1, σ2, σ3) are the Pauli matrices.

Defining γ5 = iγ0γ1γ
2γ3 =

(

−1 0

0 1

)

such that {γµ, γ5} = 0,

one has ψ = ψL + ψR ≡
(

ψL
ψR

)

where γ5ψR,L = ±ψR,L

Notice that: ψ̄ψ = ψ̄LψR + ψ̄RψL but ψ̄γµψ = ψ̄LγµψL + ψ̄RγµψR
(exercise)
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Gauge Symmetry

Consider the interaction Lagrangian:

LI = −qAµψ̄γµψ = −AµjµEM

which describes the coupling of a fermion to an electromagnetic potential.

Derived from the minimal coupling rule: pµ → pµ − qAµ, provides

LQED = ψ̄ [γµ (i∂µ − qAµ) −m]ψ − 1

4
F 2
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Gauge Symmetry

Consider the interaction Lagrangian:

LI = −qAµψ̄γµψ = −AµjµEM

which describes the coupling of a fermion to an electromagnetic potential.

Derived from the minimal coupling rule: pµ → pµ − qAµ, provides

LQED = ψ̄ [γµ (i∂µ − qAµ) −m]ψ − 1

4
F 2

Same formula can be obtained by, first, observing that
Lψ = ψ̄ (iγµ∂µ −m)ψ is invariant under ψ → e−iαψ,
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Gauge Symmetry

Consider the interaction Lagrangian:

LI = −qAµψ̄γµψ = −AµjµEM

which describes the coupling of a fermion to an electromagnetic potential.

Derived from the minimal coupling rule: pµ → pµ − qAµ, provides

LQED = ψ̄ [γµ (i∂µ − qAµ) −m]ψ − 1

4
F 2

Same formula can be obtained by, first, observing that
Lψ = ψ̄ (iγµ∂µ −m)ψ is invariant under ψ → e−iαψ,

Then, realizing that, when promoted to be local, ψ → e−iqα(x)ψ, then

LQED → ψ̄ [γµ (i∂µ − q (Aµ − ∂µα)) −m]ψ − 1

4
F 2

remains invariant provided one simultaneously performs the
gauge transformation

Aµ → Aµ + ∂µα(x)
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Gauge Symmetry

Lesson I: One could start with the globally invariant Lagrangian (Lψ) and
"force" it to be locally invariant.

In order to accomplish this:

Add a gauge field, Aµ, associated to the group symmetry - U(1).

Change ∂µ by the covariant derivate Dµ = ∂µ + iqAµ
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Gauge Symmetry

Lesson I: One could start with the globally invariant Lagrangian (Lψ) and
"force" it to be locally invariant.

In order to accomplish this:

Add a gauge field, Aµ, associated to the group symmetry - U(1).

Change ∂µ by the covariant derivate Dµ = ∂µ + iqAµ

Another example: Lφ = ∂µφ∗∂µφ globally invariant under φ→ e−iαφ

Electroweak Theory Basics – p.14/36



Gauge Symmetry

Lesson I: One could start with the globally invariant Lagrangian (Lψ) and
"force" it to be locally invariant.

In order to accomplish this:

Add a gauge field, Aµ, associated to the group symmetry - U(1).

Change ∂µ by the covariant derivate Dµ = ∂µ + iqAµ

Another example: Lφ = ∂µφ∗∂µφ globally invariant under φ→ e−iαφ

Then, consider: φ→ e−iα(x)φ ; ⇒ ∂µφ→ e−iα (∂µ − iq∂µα)φ
⇒ Lφ is not any more invariant.

However, Dµφ→ Dµe
−iαφ = e−iα [∂µ + iq (Aµ − ∂µα)] → e−iαDµφ

so provided that Aµ → Aµ + ∂µα.

L = (Dµφ)∗(Dµφ) − 1
4F

2 Is Gauge invariant.

However, AµAµ mass term is not...
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Non Abelian Gauge Symmetries

We may extend previous concepts to non Abelian Lie groups. Consider

SU(N), whose generators, Ta: [Ta, Tb] = ifabcTc ; TrTaTb = 1
2δab
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Non Abelian Gauge Symmetries

We may extend previous concepts to non Abelian Lie groups. Consider

SU(N), whose generators, Ta: [Ta, Tb] = ifabcTc ; TrTaTb = 1
2δab

Given a set of N scalars, Φ, with the free Lagrangian: L = ∂µΦ† · ∂µΦ
globally invariant under: Φ → U(x)Φ ≡ e−igλaTaΦ .

The locally invariant theory includes the general covariant derivative:

Dµ = ∂µ + igTaA
a
µ(x)
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Non Abelian Gauge Symmetries

We may extend previous concepts to non Abelian Lie groups. Consider

SU(N), whose generators, Ta: [Ta, Tb] = ifabcTc ; TrTaTb = 1
2δab

Given a set of N scalars, Φ, with the free Lagrangian: L = ∂µΦ† · ∂µΦ
globally invariant under: Φ → U(x)Φ ≡ e−igλaTaΦ .

The locally invariant theory includes the general covariant derivative:

Dµ = ∂µ + igTaA
a
µ(x)

Yang-Mills fields: TaA
a
µ
′ = U−1TaA

a
µU + iU−1∂µU

Besides, we must add LYM = − 1
2TrFµνFµν = − 1

4F
a
µνF

aµν

where Fµν = TaF
a
µν and F aµν = ∂µA

a
ν − ∂νA

a
µ − gfabcA

b
µA

c
ν

exercise: Verify gauge invariance of (DµΦ)†(DµΦ)
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Spontaneous Symmetry Breaking

v

v

Exact symm.

Explicit B.

Spontaneous B.inv

no−inv

invL

no−invL

vacuum = Minimal energy state. It can be de-
generated.

Coleman’s Theorem: If the vacuum is invari-
ant under a given symmetry group, G, so will
be the Lagrangian

This describes an exact symmetry
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Spontaneous Symmetry Breaking

v

v

Exact symm.

Explicit B.

Spontaneous B.inv

no−inv

invL

no−invL

vacuum = Minimal energy state. It can be de-
generated.

Coleman’s Theorem: If the vacuum is invari-
ant under a given symmetry group, G, so will
be the Lagrangian

This describes an exact symmetry

If vacuum is not invariant, this does not determine what it should happen for
the Lagrangian In any case, the symmetry would be broken as a whole.

- L non invariant indicates an explicitely broken symmetry

- When L remains invariant we have a Spontaneously Broken symmetry

There is a close connection among SSB and gauge boson masses.
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Spontaneous Breaking of Global Symmetries

Consider the Lagrangian:

Lφ = ∂µφ∗(x)∂µφ(x) −m2φ∗φ− λ

4
(φ∗φ)2 λ > 0

which is invariant under the global U(1) transformations: φ→ e−iαφ
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Spontaneous Breaking of Global Symmetries

Consider the Lagrangian:

Lφ = ∂µφ∗(x)∂µφ(x) −m2φ∗φ− λ

4
(φ∗φ)2 λ > 0

which is invariant under the global U(1) transformations: φ→ e−iαφ

Vacuum corresponds to the field configuration which minimizes the potential
(the vacuum expectation value). In this case 〈φ〉 = 0.

Vacuum is non degenerated and it is invariant → Symmetry is exact.

-2 -1 1 2

2

4

6

8

V
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Spontaneous Breaking of Global Symmetries

Consider the Lagrangian:

Lφ = ∂µφ∗(x)∂µφ(x) −m2φ∗φ− λ

4
(φ∗φ)2 λ > 0

which is invariant under the global U(1) transformations: φ→ e−iαφ

In contrast, consider:

V (φ) = −µ2φ∗φ+
λ

4
(φ∗φ)2

The minimum now fulfills (exercise):

|〈φ〉|2 =
2µ2

λ
≡ v

Degeneracy: U(1) maps any given value into another with a different phase.

Symmetry is spontaneously broken.
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Spontaneous Breaking of Global Symmetries

It is convenient to consider the redefinition of field variables over the classical
vacuum: φ→ 〈φ〉 + φ(x)

Setting this into the potential we get (exercise):

V (φ) = −µ
4

λ
+ 2µ2 (Reφ)2 +

√

λ

2
µReφ|φ2 +

λ

4
|φ|4

Thus, the theory describes:

A massive scalar: φ1 =
√

2 Reφ with mass
√

2µ.

A massless scalar: φ1 =
√

2 Imφ the Goldstone boson.
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Spontaneous Breaking of Local Symmetries

Consider instead: L = (Dµφ)∗(Dµφ) − V (φ) − 1
4F

2

Under redefinition: φ→
(

v +
1√
2
ϕ(x)

)

e−iχ(x)/v

we get V (φ) = V (ϕ), and (exercise):

|Dµφ|2 → 1

2

∣

∣

∣

∣

∂µϕ+ iqϕ

(

Aµ − 1

qv
∂µχ

)

+ i
√

2qv

(

Aµ − 1

qv
∂µχ

)∣

∣

∣

∣

2
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Spontaneous Breaking of Local Symmetries

Consider instead: L = (Dµφ)∗(Dµφ) − V (φ) − 1
4F

2

Under redefinition: φ→
(

v +
1√
2
ϕ(x)

)

e−iχ(x)/v

we get V (φ) = V (ϕ), and (exercise):

|Dµφ|2 → 1

2

∣

∣

∣

∣

∂µϕ+ iqϕ

(

Aµ − 1

qv
∂µχ

)

+ i
√

2qv

(

Aµ − 1

qv
∂µχ

)∣

∣

∣

∣

2

Now, a gauge transformation allows to remove the Goldstone boson:

Bµ = Aµ − 1
qv∂µχ and one gets the mass term: q2v2BµB

µ
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Spontaneous Breaking of Local Symmetries

Consider instead: L = (Dµφ)∗(Dµφ) − V (φ) − 1
4F

2

Under redefinition: φ→
(

v +
1√
2
ϕ(x)

)

e−iχ(x)/v

we get V (φ) = V (ϕ), and (exercise):

|Dµφ|2 → 1

2

∣

∣

∣

∣

∂µϕ+ iqϕ

(

Aµ − 1

qv
∂µχ

)

+ i
√

2qv

(

Aµ − 1

qv
∂µχ

)∣

∣

∣

∣

2

Now, a gauge transformation allows to remove the Goldstone boson:

Bµ = Aµ − 1
qv∂µχ and one gets the mass term: q2v2BµB

µ

Lesson II: Under Spontaneous Breaking gauge fields acquire mass by
absorbing the Goldstone bosons.

This is called The Higgs Mechanism (Anderson, Kibble, Guralnik, Hagen, Brout, and
Englert)
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Higgs Mechanism

Mass generation in non Abelian gauge theories follows a similar path

Consider again a given representation of scalar fields, with

DµΦ = (∂µ + igTaA
a
µ)Φ

It is easy to see that the sole contribution of vacuum, 〈Φ〉, that comes from
the kinetic term, |DµΦ|2, generates the mass term

g2 (Ta〈Φ〉)† (Tb〈Φ〉)AaµAbµ
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Higgs Mechanism

Mass generation in non Abelian gauge theories follows a similar path

Consider again a given representation of scalar fields, with

DµΦ = (∂µ + igTaA
a
µ)Φ

It is easy to see that the sole contribution of vacuum, 〈Φ〉, that comes from
the kinetic term, |DµΦ|2, generates the mass term

g2 (Ta〈Φ〉)† (Tb〈Φ〉)AaµAbµ

In general, only some field combinations would get mass:

All gauge fields associated to Ta, such that Ta〈Φ〉 = 0, remain massless
⇒ Those Ta’s generate the residual symmetry (unbroken): G′ ⊂ G.

To get the massive ones we must diagonalize m2
ab = g2 (Ta〈Φ〉)† (Tb〈Φ〉)

Lets explore an interesting case...
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Spontaneous Breaking ofSU(2) × U(1)

Consider the Lagrangian

LΦ = ∂µΦ†(x)∂µΦ(x) + µ2Φ†Φ − λ

4
(Φ†Φ)2

where Φ the scalar doublet: Φ =

(

φ1

φ2

)

The model is invariant under global SU(2):

Φ → e−igα
aτaΦ with τa =

1

2
σa a = 1, 2, 3
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Spontaneous Breaking ofSU(2) × U(1)

Consider the Lagrangian

LΦ = ∂µΦ†(x)∂µΦ(x) + µ2Φ†Φ − λ

4
(Φ†Φ)2

where Φ the scalar doublet: Φ =

(

φ1

φ2

)

The model is invariant under global SU(2):

Φ → e−igα
aτaΦ with τa =

1

2
σa a = 1, 2, 3

The local theory ∂µΦ → DµΦ =
(

∂µ + igAaµτa
)

Φ si 〈Φ〉 =

(

0

v

)

Thus: |Dµ〈Φ〉|2 = g2
(

0 v
)

τaτb

(

0

v

)

AaµA
bµ

=
1

2
g2
(

0 v
)

{τa, τb}
(

0

v

)

AaµA
bµ =

1

4
g2v2AaµA

aµ

All gauge fields acquire mass
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Spontaneous Breaking ofSU(2) × U(1)

Consider the Lagrangian

LΦ = ∂µΦ†(x)∂µΦ(x) + µ2Φ†Φ − λ

4
(Φ†Φ)2

where Φ the scalar doublet: Φ =

(

φ1

φ2

)

The model is invariant under global SU(2):

Φ → e−igα
aτaΦ with τa =

1

2
σa a = 1, 2, 3

However, SU(2) is not all the symmetry. There is also U(1): Φ → e−ig
′βΦ
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Spontaneous Breaking ofSU(2) × U(1)

Consider the Lagrangian

LΦ = ∂µΦ†(x)∂µΦ(x) + µ2Φ†Φ − λ

4
(Φ†Φ)2

where Φ the scalar doublet: Φ =

(

φ1

φ2

)

The model is invariant under global SU(2):

Φ → e−igα
aτaΦ with τa =

1

2
σa a = 1, 2, 3

However, SU(2) is not all the symmetry. There is also U(1): Φ → e−ig
′βΦ

For the local theory we the then get: DµΦ =
(

∂µ + igAaµτa + ig′ 12Bµ
)

Φ

⇒ |Dµ〈Φ〉|2 =
(

0 v
)

(

gAaµτa +
1

2
g′Bµ

)(

gAbµτb +
1

2
g′Bµ

)(

0

v

)

=
v2

4

[

g2
(

A1
µ

)2
+ g2

(

A2
µ

)2
+
(

gA3
µ − g′Bµ

)2
]

(exercise)
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Spontaneous Breaking ofSU(2) × U(1)

v2

4

[

g2
(

A1
µ

)2
+ g2

(

A2
µ

)2
+
(

gA3
µ − g′Bµ

)2
]

we then have:

Three massive gauge bosons:

W±
µ =

1√
2

(

A1
µ ∓ iA2

µ

)

with mass mW =
gv√

2

Zµ =
1

√

g2 + g′2

(

gA3
µ − g′Bµ

)

with mass mZ =
√

g2 + g′2
v√
2

(For weak interactions PDG (2008):
mW = 80.398S ± 0.025 GeV ; mZ = 91.1876 ± 0.0021 GeV ).

A massless boson (the photon)

Aµ =
1

√

g2 + g′2

(

g′A3
µ + gBµ

)
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Spontaneous Breaking ofSU(2) × U(1)

It is convenient to define the mixing:

cos θW =
g

√

g2 + g′2
=
mW

mZ
; sin θW =

g′
√

g2 + g′2

to write:
(

Z

A

)

=

(

cos θW − sin θW
sin θW cos θW

)(

A3

B

)
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Spontaneous Breaking ofSU(2) × U(1)

It is convenient to define the mixing:

cos θW =
g

√

g2 + g′2
=
mW

mZ
; sin θW =

g′
√

g2 + g′2

to write:
(

Z

A

)

=

(

cos θW − sin θW
sin θW cos θW

)(

A3

B

)

Finally, we write the covariant derivative in terms of massive fields:

exercise: From Dµ = ∂µ + igAaµTa + ig′ 12Y Bµ and defining

Q = T3 +
1

2
Y y e =

gg′
√

g2 + g′2
= g sin θW = g′ cos θW

we get:

Dµ = ∂µ + i
g√
2

(

W+
µ T

+ +W−
µ T

−)+ i
g

cos θW
Zµ
(

T3 − sin2 θWQ
)

+ ieAµQ

where T± = T 1 ± iT 2. Three parameters: e ; θW ; mW .
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Chapter 3

Basics

of the

Electroweak Theory
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The Standard Model for Leptons

Let us consider a single lepton flavor: e, νe.

L = iēL 6∂eL + iν̄eL 6∂νeL + iēR 6∂eR

where by construction we assume no νR.

eL and νeL are naturally arranged in a SU(2) doublet:

L =

(

νeL
eL

)

⇒ L = iL̄ 6∂L+ iēR 6∂eR

eR is a singlet, so, it should have not weak interactions, as required.
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The Standard Model for Leptons

Let us consider a single lepton flavor: e, νe.

L = iēL 6∂eL + iν̄eL 6∂νeL + iēR 6∂eR

where by construction we assume no νR.

eL and νeL are naturally arranged in a SU(2) doublet:

L =

(

νeL
eL

)

⇒ L = iL̄ 6∂L+ iēR 6∂eR

eR is a singlet, so, it should have not weak interactions, as required.

There is also a U(1) -phase change- symmetry. The associated charge
is called hypercharge (Y). Thus, we consider SU(2)L × U(1)Y .
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The Standard Model for Leptons

Let us consider a single lepton flavor: e, νe.

L = iēL 6∂eL + iν̄eL 6∂νeL + iēR 6∂eR

where by construction we assume no νR.

eL and νeL are naturally arranged in a SU(2) doublet:

L =

(

νeL
eL

)

⇒ L = iL̄ 6∂L+ iēR 6∂eR

eR is a singlet, so, it should have not weak interactions, as required.

There is also a U(1) -phase change- symmetry. The associated charge
is called hypercharge (Y). Thus, we consider SU(2)L × U(1)Y .

To fix the hypercharge, Y , we use the electric charge: Q = T3 + 1
2Y .

⇒ L(2, Y = −1)

eR(1, Y = −2)
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The Standard Model for Leptons

The covariant derivatives for L(2,−1) and eR(1,−2):

DµL =

(

∂µ + igAaµτa − ig′
1

2
Bµ

)

L

DµeR = (∂µ − ig′Bµ) eR

thus, the local theory Le = iL̄γµDµL+ iēRγ
µDµeR.
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The Standard Model for Leptons

The covariant derivatives for L(2,−1) and eR(1,−2):

DµL =

(

∂µ + igAaµτa − ig′
1

2
Bµ

)

L

DµeR = (∂µ − ig′Bµ) eR

thus, the local theory Le = iL̄γµDµL+ iēRγ
µDµeR.

For SSB we "minimally" have to consider a scalar doublet Φ:

〈Φ〉 =

(

0

v

)

Thus: Φ(2, Y = 1). ⇒ DµΦ =
(

∂µ + igAaµτa + ig′ 12Bµ
)

Φ
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The Standard Model for Leptons

The covariant derivatives for L(2,−1) and eR(1,−2):

DµL =

(

∂µ + igAaµτa − ig′
1

2
Bµ

)

L

DµeR = (∂µ − ig′Bµ) eR

thus, the local theory Le = iL̄γµDµL+ iēRγ
µDµeR.

For SSB we "minimally" have to consider a scalar doublet Φ:

〈Φ〉 =

(

0

v

)

Thus: Φ(2, Y = 1). ⇒ DµΦ =
(

∂µ + igAaµτa + ig′ 12Bµ
)

Φ

Yukawa couplings hL̄ΦeR + h.c.⇒ meēLeR ; where me = h〈Φ〉 = hv
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The Standard Model for Leptons

The covariant derivatives for L(2,−1) and eR(1,−2):

DµL =

(

∂µ + igAaµτa − ig′
1

2
Bµ

)

L

DµeR = (∂µ − ig′Bµ) eR

thus, the local theory Le = iL̄γµDµL+ iēRγ
µDµeR.

For SSB we "minimally" have to consider a scalar doublet Φ:

〈Φ〉 =

(

0

v

)

Thus: Φ(2, Y = 1). ⇒ DµΦ =
(

∂µ + igAaµτa + ig′ 12Bµ
)

Φ

Yukawa couplings hL̄ΦeR + h.c.⇒ meēLeR ; where me = h〈Φ〉 = hv

Total Lagrangian LWS = Lℓ + LΦ + LYM + LY
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The Standard Model for Leptons

Total Lagrangian LWS = Lℓ + LΦ + LYM + LY

For the three families: Le ; Lµ ; Lτ ; eR ; µR ; τR ;

Lℓ =
∑

ℓ=e,µ,τ

i
[

L̄ℓγ
µDµLℓ + ℓ̄Rγ

µDµℓR
]
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The Standard Model for Leptons

Total Lagrangian LWS = Lℓ + LΦ + LYM + LY

For the three families: Le ; Lµ ; Lτ ; eR ; µR ; τR ;

Lℓ =
∑

ℓ=e,µ,τ

i
[

L̄ℓγ
µDµLℓ + ℓ̄Rγ

µDµℓR
]

LΦ = (DµΦ)†(DµΦ) + µ2Φ†Φ − λ

4
(Φ†Φ)2
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The Standard Model for Leptons

Total Lagrangian LWS = Lℓ + LΦ + LYM + LY

For the three families: Le ; Lµ ; Lτ ; eR ; µR ; τR ;

Lℓ =
∑

ℓ=e,µ,τ

i
[

L̄ℓγ
µDµLℓ + ℓ̄Rγ

µDµℓR
]

LΦ = (DµΦ)†(DµΦ) + µ2Φ†Φ − λ

4
(Φ†Φ)2

LYM = −1

4
F aµνF

aµν − 1

4
BµνB

µν

where F aµν = ∂µA
a
ν − ∂νA

a
µ − gǫabcAbµA

c
ν ; and Bµν = ∂µBν − ∂νBµ
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The Standard Model for Leptons

Total Lagrangian LWS = Lℓ + LΦ + LYM + LY

For the three families: Le ; Lµ ; Lτ ; eR ; µR ; τR ;

Lℓ =
∑

ℓ=e,µ,τ

i
[

L̄ℓγ
µDµLℓ + ℓ̄Rγ

µDµℓR
]

LΦ = (DµΦ)†(DµΦ) + µ2Φ†Φ − λ

4
(Φ†Φ)2

LYM = −1

4
F aµνF

aµν − 1

4
BµνB

µν

where F aµν = ∂µA
a
ν − ∂νA

a
µ − gǫabcAbµA

c
ν ; and Bµν = ∂µBν − ∂νBµ

Finally: LY =
∑

ℓ=e,µ,τ

[

hℓL̄ℓΦℓR + h.c
]

SSB: 〈Φ〉 . . .
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The Standard Model for Leptons

Next, for the spontaneous breaking:

Φ =

(

0

v + h(x)√
2

)

Massive Gauge Bosons:

W±
µ =

1√
2

(

A1
µ ∓ iA2

µ

)

Zµ =
(

cos θWA
3
µ − sin θWBµ

)

Aµ =
(

sin θWA
3
µ + cos θWBµ

)
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The Standard Model for Leptons

Next, for the spontaneous breaking:

Φ =

(

0

v + h(x)√
2

)

Massive Gauge Bosons:

W±
µ =

1√
2

(

A1
µ ∓ iA2

µ

)

Zµ =
(

cos θWA
3
µ − sin θWBµ

)

Aµ =
(

sin θWA
3
µ + cos θWBµ

)

Remainder: gAaµTa + g′ 12Y Bµ also goes as

g√
2

(

W+
µ T

+ +W−
µ T

−)+
g

cos θW
Zµ
(

T3 − sin2 θWQ
)

+ eAµQ
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Charged Currents
g√
2

(

W+
µ T

+ +W−
µ T

−)⇒ Only Lℓ will coupled to W±.

Interaction Lagrangian:

LC = − g√
2
W+
µ L̄ℓγ

µ (τ1 + iτ2)Lℓ + h.c

τ1 = 1
2σi
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Charged Currents
g√
2

(

W+
µ T

+ +W−
µ T

−)⇒ Only Lℓ will coupled to W±.

Interaction Lagrangian:

LC = − g√
2
W+
µ L̄ℓγ

µ (τ1 + iτ2)Lℓ + h.c

τ1 = 1
2σi =⇒ LC = − g√

2
W+
µ

(

ν̄ℓL ℓ̄L
)

γµ
(

0 1

0 0

)(

νℓL
ℓL

)

+ h.c
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Charged Currents
g√
2

(

W+
µ T

+ +W−
µ T

−)⇒ Only Lℓ will coupled to W±.

Interaction Lagrangian:

LC = − g√
2
W+
µ L̄ℓγ

µ (τ1 + iτ2)Lℓ + h.c

τ1 = 1
2σi =⇒ LC = − g√

2
W+
µ

(

ν̄ℓL ℓ̄L
)

γµ
(

0 1

0 0

)(

νℓL
ℓL

)

+ h.c

=⇒ LC = − g√
2
W+
µ (ν̄ℓLγ

µℓL) + h.c ≡ − g

2
√

2
W+
µ j

µ
c + h.c

where jµc = ν̄eγ
µ(1 − γ5)e+ ν̄µγ

µ(1 − γ5)µ+ ν̄τγ
µ(1 − γ5)τ
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Charged Currents

=⇒ LC = − g√
2
W+
µ (ν̄ℓLγ

µℓL) + h.c ≡ − g

2
√

2
W+
µ j

µ
c + h.c

where jµc = ν̄eγ
µ(1 − γ5)e+ ν̄µγ

µ(1 − γ5)µ+ ν̄τγ
µ(1 − γ5)τ

e

e−
u

d

W−

Q

e

e−

u

d

JW
JW

+ JW
+

|Q |<< MW GF/ 2

JW

Q2 ≪M2
W ⇒ LW ≈M2

WW
−
µ W

+µ − g

2
√

2

[

W+
µ j

µ
c +W−

µ j
µ†
c

]

The equation of motion for W− goes then as: M2
WW

−
µ ≈ g

2
√

2
jµc

=⇒ LW ≈ − g2

8M2
W

jµ†c jc µ =⇒ GF√
2

=
g2

8M2
W

=
e2

8M2
W sin2 θW
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Neutral Currents

Next, consider: g
cos θW

Zµ
(

T3 − sin2 θWQ
)

+ eAµQ
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Neutral Currents

Next, consider: g
cos θW

Zµ
(

T3 − sin2 θWQ
)

+ eAµQ

Since Lℓ(2,−1) ; ℓR(1,−2) y Q = T3 + 1
2Y :

=⇒ The electromagnetic interaction:

LEM=eAµ
(

ℓ̄Lγ
µℓL + ℓ̄Rγ

µℓR
)

=eAµ ℓ̄γ
µℓ
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Neutral Currents

Next, consider: g
cos θW

Zµ
(

T3 − sin2 θWQ
)

+ eAµQ

Since Lℓ(2,−1) ; ℓR(1,−2) y Q = T3 + 1
2Y :

=⇒ The electromagnetic interaction:

LEM=eAµ
(

ℓ̄Lγ
µℓL + ℓ̄Rγ

µℓR
)

=eAµ ℓ̄γ
µℓ

LEM=eAµJ
µ
EM ⇒ JµEM = ēγµe+ µ̄γµµ+ τ̄ γµτ
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Neutral Currents

Next, consider: g
cos θW

Zµ
(

T3 − sin2 θWQ
)

+ eAµQ

Z couplings

LZ = − g

cos θW
Zµ

{

L̄ℓ

[(

1
2 0

0 1
2

)

− sin2 θW

(

0 0

0 −1

)]

γµLℓ

−ℓ̄R
(

sin2 θWQ
)

γµℓR

}

Electroweak Theory Basics – p.27/36



Neutral Currents

Next, consider: g
cos θW

Zµ
(

T3 − sin2 θWQ
)

+ eAµQ

Z couplings

LZ = − g

cos θW
Zµ

{

L̄ℓ

[(

1
2 0

0 1
2

)

− sin2 θW

(

0 0

0 −1

)]

γµLℓ

−ℓ̄R
(

sin2 θWQ
)

γµℓR

}

LZ = − g

cos θW
Zµ

[

1

2
ν̄ℓ Lγ

µνℓ L +

(

−1

2
+ sin2 θW

)

ℓ̄Lγ
µℓL + sin2 θW ℓ̄Rγ

µℓR

]
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Neutral Currents

LZ = − g

cos θW
Zµ

[

1

2
ν̄ℓ Lγ

µνℓ L +

(

−1

2
+ sin2 θW

)

ℓ̄Lγ
µℓL + sin2 θW ℓ̄Rγ

µℓR

]

Neutral currents: LZ = − e
sin(2θW )Zµ

(

jµn,ν + jµn,ℓ

)

where

jµn,ν = 1
2 [ν̄eγ

µ(1 − γ5)νe + ν̄µγ
µ(1 − γ5)νµ + ν̄τγ

µ(1 − γ5)ντ ]

jµn,ℓ =
(

− 1
2 + ξ

)

[ēγµ(1 − γ5)e+ µ̄γµ(1 − γ5)µ+ τ̄ γµ(1 − γ5)τ ]

+ξ [ēγµ(1 + γ5)e+ µ̄γµ(1 + γ5)µ+ τ̄ γµ(1 + γ5)τ ]

ξ = sin2 θW
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Neutral Currents

Neutral currents: LZ = − e
sin(2θW )Zµ

(

jµn,ν + jµn,ℓ

)

where

jµn,ν = 1
2 [ν̄eγ

µ(1 − γ5)νe + ν̄µγ
µ(1 − γ5)νµ + ν̄τγ

µ(1 − γ5)ντ ]

jµn,ℓ =
(

− 1
2 + ξ

)

[ēγµ(1 − γ5)e+ µ̄γµ(1 − γ5)µ+ τ̄ γµ(1 − γ5)τ ]

+ξ [ēγµ(1 + γ5)e+ µ̄γµ(1 + γ5)µ+ τ̄ γµ(1 + γ5)τ ]

ξ = sin2 θW

Z

e−

e−

νµe→ νµe Leff = −GF√
2
jℓ,µj

µ
ℓ

where jµℓ = ν̄ℓγ
µ 1

2 (1 − γ5)νℓ + ℓ̄γµ(cV − cAγ5)ℓ

σ(νµe→ νµe) =
G2

F s
π

[

4
3 sin4 θW − sin2 θW + 1

4

]

σ(ν̄µe→ ν̄µe) =
G2

F s
π

[

4
3 sin4 θW − 1

3 sin2 θW + 1
12

]

sin2 θW = 0.2324 ± 0.0083
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Adding Quarks to the Model

Quarks have both weak and color interactions [unbroken QCD SU(3)].

At low energy the model should describe beta decay: n→ peν

Hadron Model indicates:

p = (uud) ; n = (udd)

Electric charges: u(2/3) ; d(−1/3)

Three Colors: qα ; α = 1, 2, 3.

Three Families: (u, d) ; (c, s) ; (t, b).

Electroweak Model includes:

Q

(

2,
1

3

)

α,iL

=

(

uα,iL
dα,iL

)

; uα,iR

(

1,
4

3

)

; dα,iR

(

1,−2

3

)
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Adding Quarks to the Model

Q

(

2,
1

3

)

α,iL

=

(

uα,iL
dα,iL

)

; uα,iR

(

1,
4

3

)

; dα,iR

(

1,−2

3

)

Covariant Derivatives for weak interactions:

DµQiL =

(

∂µ + igAaµτa + ig′
1

6
Bµ

)

QiL

DµuiR =

(

∂µ + ig′
2

3
Bµ

)

uiR

DµdiR =

(

∂µ − ig′
1

3
Bµ

)

diR
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Adding Quarks to the Model

Q

(

2,
1

3

)

α,iL

=

(

uα,iL
dα,iL

)

; uα,iR

(

1,
4

3

)

; dα,iR

(

1,−2

3

)

Covariant Derivatives for weak interactions:

DµQiL =

(

∂µ + igAaµτa + ig′
1

6
Bµ

)

QiL

DµuiR =

(

∂µ + ig′
2

3
Bµ

)

uiR

DµdiR =

(

∂µ − ig′
1

3
Bµ

)

diR

More convenient:

Dµ = ∂µ + i
g√
2

(

W+
µ T

+ +W−
µ T

−)+ i
g

cos θW
Zµ
(

T3 − sin2 θWQ
)

+ ieAµQ

Electroweak Theory Basics – p.28/36



Adding Quarks to the Model

More convenient:

Dµ = ∂µ + i
g√
2

(

W+
µ T

+ +W−
µ T

−)+ i
g

cos θW
Zµ
(

T3 − sin2 θWQ
)

+ ieAµQ

After the algebra (exercise):

Lint = −eJµq Aµ − g

2
√

2

(

W−
µ J

µ
c,q + h.c

)

− e

sin(2θW )
ZµJ

µ
n,q

Jµq =
1

3

(

d̄γµd+ s̄γµs+ b̄γµb
)

− 2

3
(ūγµu+ c̄γµc+ t̄γµt)

Jµc,q = ūγµLd+ c̄γµLs+ t̄γµLb γµL ≡ γµ(1 − γ5); γµR ≡ γµ(1 + γ5)

Jµn,q =
(

1
2 − 2

3ξ
)

[ūγµLu+ c̄γµLc+ t̄γµLt] − 2
3ξ [ūγµRu+ c̄γµRc+ t̄γµRt]

+
(

− 1
2 + 1

3ξ
) [

d̄γµLd+ s̄γµLs+ b̄γµLb
]

+ 1
3ξ
[

d̄γµRd+ s̄γµRs+ b̄γµRb
]
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Yukawa Couplings: Masses and Mixings

hℓℓ′L̄ℓΦℓ
′
R can always be written such that: hℓℓ′ = hℓδℓℓ′ ⇒ mℓ = hℓ〈Φ〉
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Yukawa Couplings: Masses and Mixings

That is not the case for the quark sector!!:

fabQ̄aLΦdbR + habQ̄aLΦ̃ubR

where Φ̃ is the charged conjugated field, Φ̃ = iσ2Φ
∗;
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Yukawa Couplings: Masses and Mixings

That is not the case for the quark sector!!:

fabQ̄aLΦdbR + habQ̄aLΦ̃ubR

where Φ̃ is the charged conjugated field, Φ̃ = iσ2Φ
∗; setting in 〈Φ〉 =

(

0

v

)

d̄aL (Md)ab daR + ūaL (Mu)ab uaR

where (Md)ab ≡ vfab ; (Mu)ab ≡ vhab
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Yukawa Couplings: Masses and Mixings

That is not the case for the quark sector!!:

fabQ̄aLΦdbR + habQ̄aLΦ̃ubR

where Φ̃ is the charged conjugated field, Φ̃ = iσ2Φ
∗; setting in 〈Φ〉 =

(

0

v

)

d̄aL (Md)ab daR + ūaL (Mu)ab uaR

where (Md)ab ≡ vfab ; (Mu)ab ≡ vhab

To diagonalize: M2
uL = Mu ·M†

u →
(

M2
uL

)

diag
= UL ·M2

uL · U†
L

Similarly: M2
dL = Md ·M†

d →
(

M2
dL

)

diag
= VL ·M2

dL · V †
L
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Yukawa Couplings: Masses and Mixings

That is not the case for the quark sector!!:

fabQ̄aLΦdbR + habQ̄aLΦ̃ubR

where Φ̃ is the charged conjugated field, Φ̃ = iσ2Φ
∗; setting in 〈Φ〉 =

(

0

v

)

d̄aL (Md)ab daR + ūaL (Mu)ab uaR

where (Md)ab ≡ vfab ; (Mu)ab ≡ vhab

To diagonalize: M2
uL = Mu ·M†

u →
(

M2
uL

)

diag
= UL ·M2

uL · U†
L

Similarly: M2
dL = Md ·M†

d →
(

M2
dL

)

diag
= VL ·M2

dL · V †
L

Mass eigenstates: uα,L = (UL)αa · uaL ; dα,L = (VL)αa · daL

WµūaLγ
µdaL = WµūαL (UCKM )αβ γ

µdβL UCKM = ULV
†
L
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Yukawa Couplings: Masses and Mixings

UCKM =





Uud Uus Uub
Ucd Ucs Ucb
Utd Uts Utb



 =





0.97419(22) 0.2257(10) 0.00359(16)

0.2256(10) 0.97334(23) 0.0415(+10
−11)

0.00874(+26
−37) 0.0407(10) 0.9990(+44

−43)





Standard Parameterization: Three angles and one phase:

UCKM =





c12c13 s12c13 s13e
−iϕ

−s12c23 − c12s23s13e
iϕ c12c23 − s12s23s13e

iϕ s23c13
s12s23 − c12c23s13e

iϕ −c12s23 − s12c23s13e
iϕ c23c13



 ;

θ12 = θC ≃ 12.9o ; θ23 ≃ 2.4o ; θ13 ≃ 0.2o ; ϕ ≃ 59o ± 13

Wolfenstein Parameterization:

UCKM =





1 − 1
2λ

2 λ Aλ(ρ− iη)

−λ 1 − 1
2λ

2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1



 ;

λ = 0.2257 ;

A = 0.814 ;

ρ = 0.135 ;

η = 0.349

Electroweak Theory Basics – p.30/36



Counting Parameters

3: Coupling constants: g ; g′ ; gs or equivalently αs =
g2s
4π ; αEM ; sin2 θW .

1: Number of Families = 3.

9: Fermion masses (Yukawa couplings).

4: UCKM parameters.

2: Parameters in the Higgs sector: µ2 ; λ ; or equivalently mH ; MW .

Total: 19 free parameters
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Counting Parameters

3: Coupling constants: g ; g′ ; gs or equivalently αs =
g2s
4π ; αEM ; sin2 θW .

1: Number of Families = 3.

9: Fermion masses (Yukawa couplings).

4: UCKM parameters.

2: Parameters in the Higgs sector: µ2 ; λ ; or equivalently mH ; MW .

Total: 19 free parameters

Additionally:

- ΛQCD

- θQCD: QCD global anomaly ∂µj
µ
5 = θ

32π2 g
2
sF · F̃
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Final Lesson: Model Building

General Lessons for building models:

Choose a symmetry. vgr. a gauge group G

Choose proper representations that accommodate fermion fields

Take an appropriated number of scalar multiplets in an adequate
representations that provide the required SSB.

Write down the locally invariant Lagrangian. Include all renormalizable
terms that are permitted by the symmetry: L = Lℓ + LΦ + LYM + LY
Determine the vacuum configuration that breaks the symmetry

Insert vev and diagonalize mass matrices.

Finally, rewrite the Lagrangian in terms of mass eigenstates.

Put your model to the test.
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Chapter 4

Beyond Standard Model?
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Open Questions

The Gauge problem: GMS = SU(3) × SU(2) × U(1) where gs 6= g 6= g′

from phenomenological considerations.

Partial Unification: U(1)Q ⊂ SU(2)L × U(1)Y : Q = TL + 1
2Y

Color remains as a separated sector: SU(3)

Charge Quantization: Why hypercharges are as they are? q = ±1, 2
3 ,− 1

3
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Open Questions

The Gauge problem: GMS = SU(3) × SU(2) × U(1) where gs 6= g 6= g′

from phenomenological considerations.

Partial Unification: U(1)Q ⊂ SU(2)L × U(1)Y : Q = TL + 1
2Y

Color remains as a separated sector: SU(3)

Charge Quantization: Why hypercharges are as they are? q = ±1, 2
3 ,− 1

3

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

α3
-1

α2
-1

α1
-1

i-1

log10  µ (GeV)

RGE:

dαi
d lnµ

=
1

2π
biα

2
i for αi =

g2
i

4π

MGUT ≈ 1016 GeV

Needs supersymmetry

A unique simple gauge group?...
SU(5), SO(10), E6 . . .?
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Open Questions

The Flavor Problem

There is no a priori reason for
fermion mass spectrum.

mt ≫ mq > mℓ

In general mdown > mup

but mu > md.

Is there a Flavor symmetry?

Neutrinos are massive !!

Is neutrino Dirac or Majorana?

L̄Φ̃NR +
1

2
MRN̄

c
RNR

See-saw mν ∼ m2
D/MR
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Open Questions

The Flavor Problem: Neutrino Oscillations

Compelling evidence that neutrinos oscillate

Solar neutrinos (Clorine, Gallex, Kamiokande, SAGE,
SuperKamiokande, SNO)

νe −→ νµ, ντ

Atmospheric neutrinos (Kamiokande, MACRO, Soudan,
SuperKamiokande)

νµ −→ ντ

Accelerator and Power Plant neutrinos (KamLAND, K2K, CHOOZ,
Palo-Verde, MINOS, MiniBoon,...), confirm evidence.
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Open Questions

The Flavor Problem: Neutrino Oscillations

See-saw: Mαβ ν̄ανβ ; M ≈ −mT
DM

−1
R mD non diagonal.

να =
∑

i

Uαiνi for α = e, µ, τ ; i = 1, 2, 3

where U = UPMNS ·K ; K = diag{1, eiφ1 , eiφ2}

UPMNS =





c12c13 s12c13 s13e
−iϕ

−s12c23 − c12s23s13e
iϕ c12c23 − s12s23s13e

iϕ s23c13
s12s23 − c12c23s13e

iϕ −c12s23 − s12c23s13e
iϕ c23c13



 ;

Flavor oscillations

Pαβ = |〈να|νβ(L)〉|2 = δαβ − 4
∑

a<b

U∗
αaU

∗
βbU

∗
αbU

∗
βa sin 2

∆m2
ab

4E
L

Electroweak Theory Basics – p.34/36



Open Questions

The Flavor Problem: Neutrino Oscillations

Flavor oscillations

Pαβ = |〈να|νβ(L)〉|2 = δαβ − 4
∑

a<b

U∗
αaU

∗
βbU

∗
αbU

∗
βa sin 2

∆m2
ab

4E
L

Solar scale ∆m2
⊙ = ∆m2

12 = 7.6 +0.5
−0.3 × 10−5 eV2;

ATM scale ∆m2
ATM = |∆m23|2 ≈ |∆m13|2 = 2.4 ± 0.3 × 10−3 eV2,

Mixings

sin2 θ⊙ = sin2 θ12 = 0.32 +0.05
−0.04

sin2 θATM = sin2 θ23 = 0.5 +0.13
−0.12

sin2 θ13 ≤ 0.033

Phases had not been measured yet
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Open Questions

The Higgs Problem

Higgs interactions: 1
4λ(Φ†Φ)2 + λψ̄LΦψR

m2
H in unstable (Hierarchy Problem)

−
→ δm2

H ≈ Λ2(λ − f 2)
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Open Questions

The Higgs Problem

Higgs interactions: 1
4λ(Φ†Φ)2 + λψ̄LΦψR

m2
H in unstable (Hierarchy Problem)

−
→ δm2

H ≈ Λ2(λ − f 2)

What should be Λ?

See-saw mass scale: MR ≈ 1013 GeV

GUT scale: MGUT = 1016 GeV
Gravity scale: MP = 2 × 1019 GeV
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Open Questions

The Higgs Problem

Higgs interactions: 1
4λ(Φ†Φ)2 + λψ̄LΦψR

m2
H in unstable (Hierarchy Problem)

−
→ δm2

H ≈ Λ2(λ − f 2)

What should be Λ?

See-saw mass scale: MR ≈ 1013 GeV

GUT scale: MGUT = 1016 GeV
Gravity scale: MP = 2 × 1019 GeV

SUSY: λ = f2

New TeV Physics?

Is there more than one Higgs? Is it fundamental? wait for LHC. . .
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Open Questions

The Higgs Problem

Higgs interactions: 1
4λ(Φ†Φ)2 + λψ̄LΦψR

m2
H in unstable (Hierarchy Problem)

−
→ δm2

H ≈ Λ2(λ − f 2)

What should be Λ?

See-saw mass scale: MR ≈ 1013 GeV

GUT scale: MGUT = 1016 GeV
Gravity scale: MP = 2 × 1019 GeV

SUSY: λ = f2

New TeV Physics?

Is there more than one Higgs? Is it fundamental? wait for LHC. . .

The Gravity Problem: How to include Gravity?
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Early Universe

Cosmological Model: SM + GR (FRW Model)

Matter Content

Known Standard matter: ≈ 3%

Dark Matter: ≈ 27% perhaps in LHC

Dark Energy: ≈ 70%
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Early Universe

Cosmological Model: SM + GR (FRW Model)

Matter Content

Known Standard matter: ≈ 3%

Dark Matter: ≈ 27% perhaps in LHC

Dark Energy: ≈ 70%

Other Initial conditions for BBN

Matter asymmetry: ηB ≈ 10−10

−→ C and CP violation; B or L violation

Flatness problem: Inflation

−→ Inflaton: ϕ ; mϕ <∼ 1014 GeV A new sector?
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Concluding Remark

“There are too many points at which the conven-
tional picture may be wrong or incomplete. The
SU(3)c×SU(2)L×U(1)Y gauge theory with
three families is certainly a good beginning, not
to accept but to attack, and exploit.”

Sheldon Lee Glashow, 1979

The Standard Model is perhaps just one more step on our way
towards a better and deeper understanding of Nature
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