Hadronic light by light contribution to the μ anomalous magnetic moment

Pablo Roig Garcés

Work done in collaboration with Khépani Raya & Adnan Bashir

QCD WG

Annual meeting of RED-FAE, Tlaxcala 28-30 September 2017

Jegerlehner & Nyffeler, Phys.Rept. 477 (2009) 1-110 Interest of a_{μ}

Interest of a_{μ}

Interest of a_{μ}

~

FNAL & J-PARC will bring the error down to 16x10⁻¹¹ in the near future

~

. .

Type of contribution	Value x 10 ¹¹	Error x 10 ¹¹
QED	116'584,718.95	0.08
EW	153.6	1.0
HVP	6825	(42)
HLbL	105	(26)
Total	116'591,803	(1)(42)(26)
Exp	116'592,091	(54)(33)

γζ γζ γζ γ, ζ γ, ζ γ, ζ γ, ζ γ, ζ γ

FNAL & J-PARC will bring the error down to 16x10⁻¹¹ in the near future

Type of contribution	Value x 10 ¹¹	Error x 10 ¹¹
QED	116'584,718.95	0.08
EW	153.6	1.0
HVP	6825	(42)
HLbL	105	(26)
Total	116'591,803	(1)(42)(26)
Exp	116'592,091	(54)(33)

Type of contribution		
QED	116'584,718.95	0.08
EW	153.6	1.0
HVP	6825	(42)
HLbL	105	(26)
Total	116'591,803	(1)(42)(26)
Exp	116'592,091	(54)(33)

Recent evaluations of a_{μ} contributions in the SM

- **5-loop QED**: Aoyama, Hayakawa, Kinoshita & Nio, Phys.Rev.Lett. 109 (2012) 111807, 111808
- EW contributions after M_H measurement: Gnedinger, Stockinger & Stockinger-Kim, Phys.Rev. D88 (2013) 053005
- Higher order QCD effects:
- Kurz, Liu, Marquard & Steinhauser, Phys.Lett. B734 (2014) 144-147; a_μ^{HVP@NNLO}=(1.24+0.01)10⁻¹⁰
- Colangelo, Hoferichter, Nyffeler, Passera, Stoffer, Phys.Lett. B735 (2014) 90-91; a_μ^{HLbl@HO}=(0.3+0.2)10⁻¹⁰
- Towards a data driven analysis of HLbL: Colangelo *et. al.* JHEP 1409 (2014) 091, Phys.Lett. B738 (2014) 6-12, JHEP 1509 (2015) 074, e-Print: arXiv:1701.06554 [hep-ph], e-Print: arXiv:1702.07347 [hep-ph].

[See also Pauk & Vanderhaeghen Phys.Rev. D90 (2014) no.11, 113012, Eur.Phys.J. C74 (2014) no.8, 3008]

Jegerlehner & Nyffeler, Phys.Rept. 477 (2009) 1-110 FNAL & J-PARC will bring the error down to 16x10⁻¹¹ in the near future line for the second sec

$$a_{\mu}^{exp} - a_{\mu}^{SM} = 288(63)(49) \times 10^{-11} \sim 3.5\sigma$$

C. Patrignani et al. (Particle Data Group), Chin. Phys. C40 (2016)

Type of contribution	Value x 10 ¹¹	Error x 10 ¹¹
QED	116'584,718.95	0.08
EW	153.6	1.0
HVP	6825	(42)
HLbL	105	(26)
Total	116'591,803	(1)(42)(26)
Exp	116'592,091	(54)(33)

But this model-dependent splitting between L.D. & S.D contributions does not need to be made in a framework capable of dealing consistently with both extreme regimes (and intermediate regions) simultaneously, like DSE

Role of π^0 TFF in $a_{\mu}^{\ \ P^0, \text{HLbL}}$

Role of
$$\pi^0$$
 TFF in $a_{\mu}^{P^0, \text{HLbL}}$

External on-shell photon

Internal off-shell photons

π^0 TFF from Dyson-Schwinger equations

K. Raya, L. Chang, A. Bashir, J. J. Cobos-Martínez, L. X. Gutiérrez-Guerrero, C. D. Roberts, P. C. Tandy Phys. Rev. D93 (2016) no.7, 074017

How to parametrize DSE π^0 TFF? (III)

 $h_3 (h_4) \& h_6$ are still free parameters. We will fit δ_{BL} to DSE data in the region relevant for $a_{\mu} (Q_i^2 \le 10 \text{ GeV}^2)$ According to different estimates $|h_3|(|h_4|) \le 10 \text{ GeV} \& h_6 \le 10 \text{ GeV}$

π^0 TFF from Dyson-Schwinger equations

Evaluation of $a_{\mu}^{\ \pi^{0}\text{-pole}}$ with DSE input

We have evaluated $a_{\mu}^{\pi^{0-pole}}$ varying parameters in the ranges discussed previously

M_{V_2} (GeV)	δ_{BL}
1.440	-0.57 ± 0.18
1.465	-0.43 ± 0.17
1.490	-0.36 ± 0.18

Table 1: Dependence of δ_{BL} on M_{V_2} .

 $|h_3|(|h_4|) \le 10 \text{ GeV } \& h_6 \le 10 \text{ GeV}$

$$h_3 + h_4 = M_{V_1}^2 M_{V_2}^2 \chi$$

 $\chi = -(3.05 \pm 0.20) \text{GeV}^{-2}$

The only relevant variations are h₃ (h₄) & δ_{BL}

 $a_{\mu}^{\pi^{0}-\text{pole}} = (6.26 \pm 0.08)10^{-10}$

Evaluation of $a_{\mu}^{\pi^{0}-\text{pole}}$ with DSE input: Conclusions

We have evaluated $a_{\mu}^{\pi^{0}\text{-pole}}$ varying parameters in the ranges discussed previously

$$a_{\mu}^{\pi^{0}\text{-pole}} = (6.26 \pm 0.08)10^{-10}$$

What's next? Obtention of on/off-shell $\eta/\eta'/\eta_{b,c}$ TFF and evaluation of the corresponding contributions to a_{μ} (Khepani Raya, Minghui Ding, Adnan Bashir, Lei Chang, Craig D. Roberts; Phys.Rev. D95 (2017) 074014).

Our result is approx. 8% higher than pion-pole evaluation of Nyffeler. This makes us **optimistic** with respect to a reduction of the exp-theo discrepancy in a_{μ} .

Bern's group work clarifies that only pole contributions are needed

Some reference values...According to Roig, Guevara & López-Castro,
Phys.Rev. D89 (2014) no.7, 073016
$$a_{\mu}^{\pi^{0},HLbL} = (5.75 \pm 0.06) \cdot 10^{-10}$$
 $a_{\mu}^{\pi^{0},HLbL} = (6.66 \pm 0.21) \cdot 10^{-10}$ $a_{\mu}^{P,HLbL} = (10.47 \pm 0.54) \cdot 10^{-10}$ $a_{\mu}^{\eta,HLbL} = (1.44 \pm 0.26) \cdot 10^{-10}$ $a_{\mu}^{\eta,HLbL} = (2.04 \pm 0.44) \cdot 10^{-10}$ $a_{\mu}^{BSM} \leq 288 \times 10^{-11}$ $a_{\mu}^{\eta',HLbL} = (1.08 \pm 0.09) \cdot 10^{-10}$ $a_{\mu}^{\eta',HLbL} = (1.77 \pm 0.23) \cdot 10^{-10}$ $a_{\mu}^{BSM} \leq 288 \times 10^{-11}$