

Sensitivity study of $\tau \rightarrow \eta \pi \nu$ at the Belle II experiment

Michel Hernández Villanueva,

Cinvestav Group Mexico City

28 Sep 2017

Outline

- B-factories and τ physics.
- Second class currents
- $\tau \rightarrow \eta \pi \nu$ decay
- Outlook.

B Factories

B-Factory ullet $BR(\Upsilon(4S) \to B\bar{B}) > 96\%$

τ factory too! $\sigma(e^+e^- -> \Upsilon(4s)) = 1.05 \text{ nb}$ $\sigma(e^+e^- -> \tau \tau) = 0.92 \text{ nb}$

Cinvestav

Integrated Luminosity of B factories

SuperKEKB

Cinvestav

Belle II Detector

KL and muon detector: Resistive Plate Counter (barrel) Scintillator + WLSF + MPPC (end-caps)

EM Calorimeter: CsI(TI), waveform sampling (barrel) Pure CsI + waveform sampling (end-caps)

electron (7GeV)

Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

Belle II MC samples

Michel H. Villanueva

Cinvestav

Mexican Contribution

504 cores
3.7 KHS06

~1.4% CPU usage of the grid

70 TB storage

Max: 274, Min: 0.04, Average: 177, Current: 37.0

JP DE CA	35.4% 20.4% 18.7% 8.7%	CZ AT RU MX	3.4% 2.0% 1.9% 1.4%	IN SI AU	0.7% 0.5% 0.3% 0.2%	PL ANY CN	0.0% 0.0% 0.0%
US	8.7% 5.0%	MX KR	1.4% 1.0%	TR TW	0.2% 0.2%	MULTIPLE	0.0%

The $\tau \rightarrow \eta \pi \nu$ decay

 In this work, we are studying the feasibility to measure the decay

 $\tau \rightarrow \eta \pi \nu$,

in order to get information related at:

- Second class currents.
- Scalar and tensorial currents.

Disadvantage: We cannot detect v

The $\tau \rightarrow \eta \pi \nu$ decay

• The corresponding suppression of the SM contribution can make new physics visible.

¹ R. Escribano, S. Gonzalez, P. Roig; Phys.Rev. D94 (2016) no.3, 034008 Michel H. Villanueva 9

Some recent theoretical predictions

Ref	BR _V (x10 ⁵)	BR _S (x10 ⁵)	BR _{V+S} (x10 ⁵)	Model
[8]	0.36	1.0	1.36	MDM, 1 resonance
[9]	[0.2, 0.6]	[0.2, 2.3]	[0.4, 2.9]	MDM, 1 and 2 resonances
[10]	0.44	0.04	0.48	Nambu-Jona-Lasinio
[11]	0.13	0.20	0.33	Analiticity, Unitarity
[12]	0.26	1.41	1.67	3 coupled channels

[8] S. Nussinov + A. Soffer, PRD78, (2008)

[9] N. Paver + Riazuddin, PRD82, (2010)

Largest difference comes from scalar form factor.

- [10] M. Volkov D. Kostunin, PRD82, (2012)
- [11] S. Descotes-Genon+B. Moussallam, EJPC74, (2014)
- [12] R. Escribano, S. Gonzalez, P. Roig; Phys.Rev. D94 (2016) no.3, 034008

The $\tau \rightarrow \eta \pi \nu$ decay

 NP contributions (scalar and tensorial currents) can be studied in the framework of an effective field theory ¹

$$\mathcal{M} = \mathcal{M}_{V} + \mathcal{M}_{S} + \mathcal{M}_{T}$$

= $\frac{G_{F}V_{ud}\sqrt{S_{EW}}}{\sqrt{2}}(1 + \epsilon_{L} + \epsilon_{R}) \left[L_{\mu}H^{\mu} + \tilde{\epsilon}_{S}LH + 2\tilde{\epsilon}_{T}L_{\mu\nu}H^{\mu\nu}\right]$

 Constraints on scalar and tensor couplings can be obtained from experimental upper limits on branching fractions.

0.5

,

CLEO

Cinvestav

¹ E. A. Garcés, MHV, G. López Castro, P. Roig; arXiv:1708.07802

Michel H. Villanueva

Previous Results

- This decay mode should have already been discovered if there were no strong background.
- Control of the background is essential.

Thrust axis

• Thrust axis: \hat{n}_{thrust} such that $V_{thrust} = \frac{\sum_{i} |\vec{p_i}^{cm} \cdot \hat{n}_{thrust}|}{\sum_{i} |\vec{p_i}^{cm}|}$ V_{thrust} is maximum. \hat{n}_{thrust} The thrust axis define a plane which splits the signal side space in two. tag side

2 ways to reconstruct η

- Thrust axis: \hat{n}_{thrust} such that V_{thrust} is maximum.
 - 1-prong
 - **BR(** $\eta \rightarrow \gamma \gamma$ **) = 39.41%**

Cinvestav

3-prong

 e^+

$\tau \rightarrow \eta \pi \nu$ signal events

- Selection criteria :tag + 1 or 3 charged + 2 or 3 γ .
- Signal events generated: 4M. (2M for training and 2M for sensitivity study).

Eff: 13.56%

Cinvestav

$\tau \rightarrow \eta \pi \nu$ bkg events

BDT variables (1-prong)

TMVA used for this test.

- ∠(η,π)
- ∠(p_{miss}, V_{thrust})
- M_{miss}
- $P_t(\pi)$
- $\eta(\eta)$
- $\angle(\gamma, \gamma)_{\eta}$

- $ext{COS}(heta_{ ext{miss}})$
- $PID_e(\pi)$
- PID_μ(π)
- PID_K(π)
- Ε(γ)

TMVA overtraining check for classifier: BDT

Correlation Matrix (background)

Linear correlation coefficients in %										100			
) ,V ,V thrust		4	4		-19	33	1	-2		-18	100		100
$\cos(\theta_{\rm miss})$	6		-55	-6	-4	-3	8			100	-18		80
#PID _e (π)	4		3	3				-7	100	-2		-	60
#PID _μ (π)	-2	-6			12	6		100	-7		-2	-	40
#PID _K (π)			-10	-4	-2	-6	100	-3		8	1	-	20
$E(\gamma_1) + E(\gamma_2)$	5	-8	-5	-50		100	-6	6			33	_	0
∠(η ,π)	-3	-6	15		100	-9		12		-4	-19	_	-20
M_{miss}	-3	-19	10	100	26	-50	-4		3	-6		_	-40
η _η	10	-1	100	10	15	-5	-10		3	-55	4	_	-60
Pt _π	1	100	-1	-19	-6	-8	3	-6			4		-80
∠(γ,γ) _η	100	1	10	-3	-3	5		-2	4	6			400
$< (\gamma, \gamma)^{P_{t}} = \frac{\eta}{h} = M_{p_{t}} < (n - \frac{E(\gamma)}{h})^{\#P_{t}} = M_{p_{t}} C_{0} = -100$													
γ													

Michel H. Villanueva

Optimal BDT cut

Optimal BDT cut

$\tau \rightarrow \eta \pi \nu$ bkg events

BDT variables (3-prong)

- $\angle(\eta,\pi)$
- ∠(pmiss, Vthrust)
- $\angle(\pi, \pi^0)$
- $\angle(\gamma, \gamma)_{\pi 0}$
- M_{miss}
- $P_t(\pi)$

Correlation Matrix (signal)

Linear correlation coefficients in %									100				
),V _{thrust}	-24	25	34	4	-2	-3	-31	-27	24	-1	100		100
$\cos(\theta_{\text{miss}})$	-1				-56	-2		-1		100	-1		80
$E(\gamma_1) + E(\gamma_2)$	-76	-15	61		-1	-37	-6	-36	100		24	-	60
∠(π^0 ,π)	34	10	-61	-5	2	38	5	100	-36	-1	-27		40
∠(η ,π)	7	-57	-8	-2		41	100	5	-6		-31	_	20
M_{miss}	33	-38	-52	-6	2	100	41	38	-37		-3	_	0
η_{π^0}	2		-4		100	2		2		-56	-2	_	-20
Pt_{π^0}	-2		8	100		-6		-5			4	_	-40
Pt_η	-54	-17	100	8	-4	-52	-8	-61	61		34		-60
Pt_{π}	9	100	-17	1	-1	-38	-57	10	-15		25		_80
∠(ץ,γ) _{π°}	100	9	-54	-2	2	33	7	34	-76	-1	-24		-00
	$\frac{\langle (\gamma, \gamma) P_{t_{x}} P_{t_{y}} P_{t_{y}} P_{t_{y}} P_{t_{y}} P_{t_{y}} P_{t_{y}} P_{t_{y}} P_{t_{y}} M_{m_{log}} < (\eta, \gamma) < (\pi \sqrt{2} (\gamma) \frac{\rho_{0}(\gamma)}{\rho_{1}}) + \frac{\rho_{0}(\gamma)}{F_{t}} (\rho_{1} + \rho_{1}) + (\rho_{1} + \rho_{1$												
		160									2	-3	thrust)

- $P_t(\eta)$
- $P_t(\pi^0)$
- $\eta(\pi^0)$
- $E(\gamma)$

TMVA overtraining check for classifier: BDT

Cinvestav

Linear correlation coefficients in % 100 21 23 -18 -17 15 -14 80 1 -54 -10 $\cos(\theta_{miss})$ 100 60 $E(\gamma_1) + E(\gamma_2)$ -76 -19 40 ∠(π^0 ,π) 29 11 -58 -5 10 31 100 20 10 34 100 ∠(η ,π) -41 -2 24 -45 -46 M_{miss} 17 100 η_{π^0} 10 -8 -29 -3 100 17 10 10 -10 -54 -20 Pt₄₀ -1 5 100 -40 Pt_n 100 5 -29 -46 -2 -58 Pt_n 16 100 -45 -41 -80

Correlation Matrix (background)

∠(γ,γ)_{π°} <mark>100 16 -56 -8</mark> 10 24 100 $M_{m_{iss}} < (\eta_{,\pi})^{\leq} (\pi \gamma_{0} E(\gamma_{,\pi}) + E(\gamma_{,m}))^{cos} (\theta_{,\pi}) + E(\gamma_{,m})^{cos} (\theta_{,m}) + E(\gamma_{,m})^{cos} (\theta_{,m})$ $<_{(\gamma,\gamma)} P_{t_{\pi}}$ P_{t_n} $P_{t_{r^{\circ}}} \eta_{r^{\circ}}$

Michel H. Villanueva

-60

Optimal BDT cut

Optimal BDT cut

Estimation @ 1 ab⁻¹

• BR($\tau \rightarrow \eta \pi \nu$) ~ 10⁻⁵

$$N_{sig} = \epsilon \cdot \sigma_{\tau\tau} \cdot BR(\tau \to \ell \nu \bar{\nu}) \cdot L \cdot BR(\tau \to \eta \pi \nu)$$

1-prong

In the mass window of η :

• $N_{bkg} = 98,146$

$$\frac{N_{sig}}{\sqrt{N_{bkg}}} \simeq 0.786$$

3-prong

In the mass window of η :

• $N_{bkg} = 12,120$

$$\frac{N_{sig}}{\sqrt{N_{bkg}}} \simeq 0.516$$

Estimation @ 50 ab⁻¹

• BR($\tau \rightarrow \eta \pi \nu$) ~ 10⁻⁵

$$N_{sig} = \epsilon \cdot \sigma_{\tau\tau} \cdot BR(\tau \to \ell \nu \bar{\nu}) \cdot L \cdot BR(\tau \to \eta \pi \nu)$$

1-prong

In the mass window of η :

• $N_{bkg} \simeq 4.9 \times 10^6$

$$\frac{N_{sig}}{\sqrt{N_{bkg}}} \simeq 5.56$$

3-prong

In the mass window of η :

• $N_{bkg} \simeq 6.06 \times 10^5$

$$\frac{N_{sig}}{\sqrt{N_{bkg}}} \simeq 3.65$$

Estimated Upper Limits

Estimated Upper Limits

Summary

- SuperKEKB will produce a sample of τ pairs 50 times larger than previous B-factories. τ physics is now considered "precision physics".
- BR measurement (or upper limit), invariant mass of $\eta\pi$, and Dalitz plots will be very important to disentangle models.
- Better selection of variables or more MVA techniques have to be tested.
- Some extra contributions to the background has to be studied.
- The comparison of channels generated, with the data obtained in the beginning of the experiment, is important to control the bkg.

Thank you

Backup

Semileptonic decays of τ lepton

<u>The τ lepton is the only lepton massive</u> enough to decay into hadrons.

- Semileptonic decay channels $\tau \rightarrow H \nu_{\tau}$ allow a clean theoretical analysis of the hadronization, determination of SM parameters and properties of weak currents¹:

 - CKM parameters
 - OPV
 - LNV and LFV
 - SM and NP interactions
 - etc.

B-factories provide a large dataset of τ leptons to precision studies.

¹Pich, A. Progress in Particle and Nuclear Physics, 75, 41-85 (2014).

W q q h_3 h_1

 \mathcal{V}_{τ}

> 200 hadronic channels

Disadvantage: We cannot detect v

Michel H. Villanueva

Hadronic Currents

 V-A currents can be classified by their transformation proprieties under G-parity ¹.

$$G = Ce^{i\pi I_2}$$

$$GA'_{\mu}G^{-1} = +A'_{\mu} \qquad J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}, \dots$$

 $GSG^{-1} = -S$

Second-class currents

SCC are isospin violating processes, suppressed by isospin symmetry.

$$\mathcal{G} \sim S/U(2) \sim \frac{m_d - m_u}{\Lambda}$$

• Unsuccessful searches of SCC in nuclear Physics.

¹Leroy, C., & Pestieau, J. (1978). Physics Letters B, 72(3), 398-399.

Michel H. Villanueva

G-parity

- G-parity is defined by $G = Ce^{i\pi I_2}$
- Is a good symmetry of the strong interactions

 $[H_{str}, I_i] = 0; \quad [H_{str}, C] = 0$

Convenient to analyze process where the initial or final state contains only mesons

$$\begin{array}{ll} G|\pi\rangle = -|\pi\rangle \\ G|\eta\rangle = +|\eta\rangle \\ G|\rho\rangle = +|\rho\rangle & \rho \to \pi\pi, 4\pi; \quad \not \to 3\pi, \eta\pi \\ G|\omega\rangle = -|\omega\rangle & \omega \to 3\pi, \rho\pi; \quad \not \to 2\pi, 4\pi \\ G|a_0\rangle = -|a_0\rangle & a_0 \to \eta\pi; \quad \not \to 2\pi \end{array}$$

• However, G-Parity is not exact. $[H_{tot}, I_i] \neq 0;$

¹T. D. Lee, and Chen Ning Yang. *Il Nuovo Cimento* 3.4 (1956): 749-753. Michel H. Villanueva 34

The $\tau \rightarrow \eta \pi \nu$ decay

 NP contributions (scalar and tensorial currents) can be studied in the framework of an effective field theory ¹

$$\mathcal{M} = \mathcal{M}_V + \mathcal{M}_S + \mathcal{M}_T$$

= $\frac{G_F V_{ud} \sqrt{S_{EW}}}{\sqrt{2}} (1 + \epsilon_L + \epsilon_R) [L_\mu H^\mu + \tilde{\epsilon}_S L H + 2\tilde{\epsilon}_T L_{\mu\nu} H^{\mu\nu}]$

 New Physics effects can appear in the distribution of Dalitz plots, with a large enhancement expected towards large values of the hadronic invariant mass¹.

$$R(ilde{\epsilon}_S, ilde{\epsilon}_T) = rac{\overline{|\mathcal{M}|^2}}{|\mathcal{M}|^2_{00}}$$

,

Ratio between the squared amplitude of EFT with $\epsilon_{T} = 0.3$ and squared amplitude of SM.

Cinvestav

¹ E. A. Garcés, MHV, G. López Castro, P. Roig; arXiv:1708.07802

Michel H. Villanueva

35

A new bkg source¹

•
$$\tau^- \to \eta \pi^- \nu_\tau \gamma$$

BR ~ 10⁻⁵! ullet(Not suppressed by G-parity, unlike the channel without photon.)

spectrum in E_{γ} is drawn.

FIG. 15. Normalized spectra of the $\tau^- \rightarrow \eta \pi^- \nu_{\tau} \gamma$ decays according to $R \chi L$.

- Veto of photons with $E_{\gamma} > 100 \text{ MeV}$ should get rid of this background.
- ¹A. Guevara, G. López-Castro, P. Roig (2016). Phys.Rev. D95 no.5, 054015 (2017)

Michel H. Villanueva

 $\eta\pi^{-}$ system is plotted.

B-Factories

	PEP-II	KEKB	SuperKEKB
Detector	BaBar	Belle	Belle II
Año de inicio	1999	1999	2016
Fin de operaciones	2008	2010	_
Energía del haz (GeV)	e-: 9.0 e+: 3.1	e-: 8.0 e+: 3.5	e-: 7.0 e+: 4.0
Luminosidad max	550 fb ⁻¹	1 ab-1	50 ab-1

• Hadronic matrix element: 2 form factors

$$H_{\mu}(p_{0}, p_{-}) \equiv \langle \eta \pi | \bar{d} \gamma_{\mu} u | 0 \rangle = f_{+}(t) \left((p_{0} - p_{-})_{\mu} - \frac{\Delta^{2}}{t} q_{\mu} \right) + f_{0}(t) \frac{\Delta^{2}}{t} q_{\mu}$$

$$t = (p_- + p_0)^2$$

• Invariant mass distribution

• Form factors

$$f_+(0) = f_0(0)$$
 $(m_\eta + m_\pi)^2 \le t \le m_\tau^2$

- MDM: Meson dominance models.
- Sum of Breit-Wigner formulae
- Chiral theory, etc.

$$\begin{aligned} f_{+}^{\mathrm{I}}(t) &= \frac{\sqrt{2}\epsilon_{\eta\pi}}{1+\beta_{\rho}} \left[\mathrm{BW}_{\rho}(t) + \beta_{\rho} \mathrm{BW}_{\rho'}(t) \right] \\ f_{0}^{\mathrm{I}}(t) &= \frac{\sqrt{2}\epsilon_{\eta\pi}}{1+\beta_{a}} \left[\mathrm{BW}_{a_{0}}(t) + \beta_{a} \mathrm{BW}_{a'_{0}}(t) \right] \\ \mathrm{BW}_{X}(t) &= m_{X}^{2}/(m_{X}^{2} - t - im_{X}\Gamma_{X}(t)) \end{aligned} \qquad \begin{aligned} f_{+}^{\mathrm{II}}(t) &= \sqrt{2}\epsilon_{\eta\pi} \left[1 + \frac{f_{\rho}g_{\rho\pi\pi}}{m_{\rho}^{2}} \left(\widetilde{\mathrm{BW}}_{\rho}(t) + \beta_{\rho} \widetilde{\mathrm{BW}}_{\rho'}(t) \right) \right] \\ \mathrm{BW}_{X}(t) &= m_{X}^{2}/(m_{X}^{2} - t - im_{X}\Gamma_{X}(t)) \end{aligned} \qquad \end{aligned}$$

TinyDST

- For tau physics study, roughly TinyDST (tdst) is designed¹.
- Events having:
 - Less than 6 charged tracks with |dr|<0.5 cm, |dz|<3.0 cm, pt>0.1 GeV/c and -0.8660<cos θ<0.9535.
 - Less than 10 photons with E_{γ} >50 MeV and -0.8660<cos θ <0.9535.
- Thrust vector information contained.
- To squeeze the size, one lepton is required.
 - In SM precise measurement, to avoid qq BG, usually, leptonic decay is required for tag tau (tau with non-signal decay).
- 50MBytes for 200k events. (In original mdst, 50MBytes for 20k events.)

Boosted Decision Trees

- What is a Decision Tree?
 - Consecutive set of questions (nodes).
 - Two possible answers per node.
 - Final verdict (**leaf**) is reached after a defined maximum of nodes.
- Advantages
 - Easy to understand.
 - Fast training.
- Disadvantages
 - Single tree not strong (that's why we use Random Forests).

Boosted Decision Trees

- Random Forest is an ensemble method that combines different trees.
- Final output is determined by the majority vote of all the trees.
- Boosting:

- Misclassified events are weighted higher so that future learners concentrate on these.

The score of an event is a weighted average of the scores the event receives from each tree in the forest.

$$bdt = \frac{\sum_{i} w_i N_i}{\sum_{i} w_i}; \quad N_i = -1 \text{ or } 1$$

BDT tests

Background rejection versus Signal efficiency

