

Exploring GeV-scale Majorana neutrinos in

lepton-number-violating b hadrons decays

Jhovanny Andres Mejia

Néstor Quintero, Diego Milanés, and José D. Ruiz-Álvarez

28.09.2017

Reunión anual de la Red-FAE

Outline

- ➔ Motivation
- \rightarrow Theoretical and experimental setup
- ➔ Overview of some results
 - Exploring GeV-scale Majorana neutrinos in leptonnumber-violating $\Lambda_{\rm b}{}^0$ baryon decays.
 - Lepton number violation in B_s meson decays induced by an on-shell Majorana neutrino

PHYSICAL REVIEW D 96, 015039 (2017)

arXiv:1708.01516

Motivation

 π^{\mp}

$\Lambda_{\rm b}{}^{_0}$ baryonic Flavor Changing Neutral Current (FCNC)

Due to the lack of manpower we could not continue this analysis.

What else can I do?

T. Gutsche et al., PRD87 (2013) 074031

-Rare decays are suppressed in the SM and can happen at loop level only.
-Very sensitive to new physics effects. What happens if the final hadrons are non-resonant too?

- Is it possible in Lambda system?
- Contact a theorist?
- -Nestor knows about it

Theoretical and experimental setup

$$\Lambda_b^0 o p \pi^+ \mu^- \mu^-$$

 $\Lambda_b^0 o \Lambda_c^+ \pi^+ \mu^- \mu^-$

Feynman graphs for $|\Delta L| = 2$ decays of \mathcal{B}_A baryon mediated by a Majorana neutrino N: four-body $\mathcal{B}^0_A(q_1q_2q_3) \rightarrow \mathcal{B}^+_B(q'_1q_2q_3)\pi^+\ell_i^-\ell_j^-$ channels.

- The smoking gun LNV signal is the neutrinoless double- β ($0\nu\beta\beta$)
- Recent attention: $\bar{B}^0 \to D^+ \pi^+ \mu^- \mu^-$, $B^- \to D^0 \pi^+ \mu^- \mu^-$ and $B_c^- \to J/\psi \pi^+ \mu^- \mu^-$
- LHCb has reported the upper limit ${\rm BR}(B^-\to D^0\pi^+\mu^-\mu^-)$ $<1.5\times10^{-6}$
- The same quark level LNV transition that generates these four-body $|\Delta L| = 2$ channels, can also produce $|\Delta L| = 2$ decays in the B_s and Λ_b^0
- Experimental search is within reach of sensitivity of the LHCb, CMS and Belle II

$$\Lambda_b^0 \to p \pi^+ \mu^- \mu^-$$
: $m_N \in [0.25, 4.57]$ GeV,
 $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \mu^- \mu^-$: $m_N \in [0.25, 3.23]$ GeV,

Theoretical setup

$$\begin{split} & \text{Branching fraction} \\ & \text{BR}(\Lambda_b^0 \to \mathcal{B}^+ \pi^+ \mu^- \mu^-) = \text{BR}(\Lambda_b^0 \to \mathcal{B}^+ \mu^- N) \\ & \times \Gamma(N \to \mu^- \pi^+) \tau_N / \hbar, \\ & = \frac{G_F^2}{16\pi} |V_{ud}^{\text{CKM}}|^2 |V_{\mu N}|^2 f_\pi^2 m_N \sqrt{\lambda(m_N^2, m_\mu^2, m_\pi^2)} \\ & \times \left[\left(1 - \frac{m_\mu^2}{m_N^2}\right)^2 - \frac{m_\pi^2}{m_N^2} \left(1 + \frac{m_\mu^2}{m_N^2}\right) \right], \\ & \mathcal{M}(\Lambda_b^0 \to \mathcal{B}^+ \mu^- N) \\ & = \frac{G_F}{\sqrt{2}} V_{Qb}^{\text{CKM}} V_{\mu N} \langle \mathcal{B}(p_B) | \bar{Q} \gamma_a (1 - \gamma_5) b | \Lambda_b(P) \rangle \\ & \times [\bar{u}(p_\mu) \gamma^a (1 - \gamma_5) v(p_N)], \\ & \text{The matrix element of the vector and axial-vector currents} \\ & \langle \mathcal{B}(p_B) | \bar{Q} \gamma_a b | \Lambda_b(P) \rangle = \bar{u}_B(p_B) \left[\gamma_a f_1^V(t) + i\sigma_{a\beta} q^\beta \frac{f_2^V(t)}{m_{\Lambda_b}} + q_a \frac{f_3^V(t)}{m_{\Lambda_b}} \right] u_{\Lambda_b}(P), \\ & \langle \mathcal{B}(p_B) | \bar{Q} \gamma_a \gamma_5 b | \Lambda_b(P) \rangle = \bar{u}_B(p_B) \left[\gamma_a f_1^A(t) + i\sigma_{a\beta} q^\beta \frac{f_2^A(t)}{m_{\Lambda_b}} + q_a \frac{f_3^A(t)}{m_{\Lambda_b}} \right] \gamma_5 u_{\Lambda_b}(P), \end{split}$$

7

$$\begin{split} \mathrm{BR}(\Lambda_b^0 \to \mathcal{B}^+ \mu^- N) &= \frac{G_F^2 \tau_{\Lambda_b}}{512 \pi^3 m_{\Lambda_b}^3 \hbar} |V_{Qb}^{\mathrm{CKM}}|^2 |V_{\mu N}|^2 \int_{(m_\mu + m_N)^2}^{\Delta^2} dt \sqrt{\lambda(m_\mu^2, m_N^2, t) \lambda(m_{\Lambda_b}^2, m_B^2, t)} \\ & \times \left\{ \frac{16}{3t^3} [f_1^V(t)]^2 \alpha_1^V(t) + \frac{8}{3m_{\Lambda_b}^2 t^2} [f_2^V(t)]^2 \alpha_2^V(t) + \frac{8}{3m_{\Lambda_b}^2 t^2} [f_3^V(t)]^2 \alpha_3^V(t) + \frac{32}{m_{\Lambda_b} t^2} [f_1^V(t) f_2^V(t) \alpha_{12}^V(t) \\ &+ f_1^V(t) f_3^V(t) \alpha_{13}^V(t)] + \frac{16}{3t^3} [f_1^A(t)]^2 \alpha_1^A(t) + \frac{8}{3m_{\Lambda_b}^2 t^2} [f_2^A(t)]^2 \alpha_2^A(t) + \frac{8}{3m_{\Lambda_b}^2 t^2} [f_3^A(t)]^2 \alpha_3^A(t) \\ &+ \frac{32}{m_{\Lambda_b} t^2} [f_1^A(t) f_2^A(t) \alpha_{12}^A(t) + f_1^A(t) f_3^A(t) \alpha_{13}^A(t)] \right\}, \end{split}$$

we will use the theoretical predictions obtained by Lattice QCD on the form factors (f_1^V, f_2^V, f_3^V) and (f_1^A, f_2^A, f_3^A)

with $\Delta_{\pm}=m_{\Lambda_b}\pm m_{\mathcal{B}}$ and $\Sigma_{\pm}=m_{\Lambda_b}^2\pm m_{\mathcal{B}}^2$

$$\begin{aligned} \alpha_1^{V/A}(t) &= m_{\mu}^2 [t(\Sigma_-^2 - 2m_N^2 \Sigma_+) - 2t^2 (m_N^2 \mp m_{\Lambda_b} m_{\mathcal{B}} + \Delta_{\mp}^2) + 4m_N^2 \Sigma_-^2 + t^3] \\ &+ (t - m_N^2) [m_N^2 (t \Sigma_+ - 2\Sigma_- + t^2) - t(\Delta_{\mp}^2 - t) (\Sigma_{\pm}^2 + 2t)], \end{aligned}$$

$$\begin{aligned} \alpha_2^{V/A}(t) &= [t(m_\mu^2 + m_N^2) + (m_\mu^2 - m_N^2)^2 - 2t^2][t(\Sigma_{\pm}^2 \pm 4m_{\Lambda_b}m_{\mathcal{B}}) - 2(\Sigma_{-}^2 + t^2)], \\ \alpha_3^{V/A}(t) &= \Delta_{\pm}^2 - t^2)[m_\mu^2(t + 2m_N^2 - m_\mu^2) + m_N^2(t - m_N^2)], \end{aligned}$$

$$\alpha_{12}^{V/A}(t) = \Delta_{\pm}(\Delta_{\mp} - t)[m_{\mu}^2(t - 2m_N^2) + m_{\mu}^4 + m_N^4 + m_N^2t - 2t^2],$$

$$\alpha_{13}^{V/A}(t) = \Delta_{\pm}(\Delta_{\pm} - t)[(m_{\mu}^2 - m_N^2)^2 - t(m_{\mu}^2 + m_N^2)],$$

Experimental setup

$$\begin{split} N_{\mathrm{exp}}^{\mathrm{CMS}} &= \sigma(p\,p \to \Lambda_b^0 X) \mathrm{BR}(\Lambda_b^0 \to \Delta L = 2) \\ &\times \epsilon_D^{\mathrm{CMS}}(\Lambda_b^0 \to \Delta L = 2) P_N^{\mathrm{CMS}} \mathcal{L}_{\mathrm{int}}^{\mathrm{CMS}} \end{split}$$

- $\mathcal{L}_{\mathrm{int}}^{\mathrm{CMS}}$ The integrated luminosity
- $\sigma(pp \rightarrow \Lambda_b X)$ The production cross section
- ϵ_D^{CMS} CMS experiment efficiency
- P_N^{CMS} The acceptance factor at the CMS
- BR($\Lambda_b^0 \rightarrow |\Delta L| = 2$) Respective branching ratio

$$\epsilon_D^{\text{CMS}}(\Lambda_b^0 \to p\pi^+\mu^-\mu^-)P_N^{\text{CMS}} \simeq 0.073 \pm 0.015$$
$$\epsilon_D^{\text{CMS}}(\Lambda_b^0 \to \Lambda_c^+\pi^+\mu^-\mu^-)P_N^{\text{CMS}} \simeq 0.059 \pm 0.013$$

Phys. Lett. B 714, 136 (2012)

$$\epsilon_D^{CMS}(p\pi^+\mu^-\mu^-) = (0.73 \pm 0.07)\%$$

$$\epsilon_D^{CMS}(\Lambda_c^+\pi^+\mu^-\mu^-) = (0.59 \pm 0.06)\%$$

J. Instrum. 9, P10009 (2014).

Experimental setup

Phys. Lett. B 714, 136 (2012)

 $\sigma(\Lambda_b) imes {
m BR}(\Lambda_b o J/\psi \Lambda) = 1.16 \pm 0.06 \pm 0.12$ nb

PDG

 ${\sf BR}(\Lambda_b o J/\psi \Lambda) imes f(b o \Lambda_b) = (5.8 \pm 0.8) imes 10^{-5}$

I. Heredia-De La Cruz (DO Collaboration), Proceedings of the DPF-2011 Conference, Providence, RI, 2011

$$f(b \rightarrow \text{baryons}) \simeq f(b \rightarrow \Lambda_b)(1 + 2f(b \rightarrow B_s^0)/f(b \rightarrow B^0))$$

Heavy Flavor Averaging Group CollaborationAverages of b-hadron, c-hadron, and τ -lepton properties as of summer 2016, arXiv:1612.07233.

$$egin{aligned} f(b o ext{baryons}) &= 0.088 \pm 0.012 \ f(b o B_s^0) &= 0.103 \pm 0.005 \ f(b o B^0) &= 0.404 \pm 0.006 \end{aligned}$$

Number of expected events at CMS

TABLE II.	Number of	of expected	events	at the (CMS for	some
selected valu	ues of the	branching	ratio of	f $\Lambda_b^0 \rightarrow$	$p\pi^+\mu^-\mu^-$	and
$\Lambda_b^0 \to \Lambda_c^+ \pi^+$	$\mu^{-}\mu^{-}$.			_		

Mode	\mathcal{L}_{int}^{CMS} (fb ⁻¹)	BR	Number of events
$\overline{\Lambda_b^0 \to p \pi^+ \mu^- \mu^-}$	30	10^{-6}	431 ± 164
		10^{-7}	43 ± 16
		10^{-8}	4 ± 2
	300	10^{-8}	43 ± 16
		10^{-9}	4 ± 2
$\Lambda_b^0 \to \Lambda_c^+ \pi^+ \mu^- \mu^-$	30	10^{-6}	27 ± 10
0 0 0		10^{-7}	3 ± 1
	300	10^{-7}	27 ± 10
		10^{-8}	3 ± 1

Number of expected events at LHCb

TABLE I. Number of expected events at the LHCb for some selected values of the branching ratio of $\Lambda_b^0 \to p \pi^+ \mu^- \mu^-$ and $\Lambda_b^0 \to \Lambda_c^+ \pi^+ \mu^- \mu^-$.

Mode	\mathcal{L}_{int}^{LHCb} (fb ⁻¹)	BR	Number of events
$\overline{\Lambda_h^0 \to p \pi^+ \mu^- \mu^-}$	10	10^{-6}	981 ± 441
		10^{-7}	98 ± 44
		10^{-8}	10 ± 4
	50	10^{-7}	530 ± 238
		10^{-8}	53 ± 24
		10^{-9}	5 ± 2
$\Lambda_h^0 \to \Lambda_c^+ \pi^+ \mu^- \mu^-$	10	10^{-6}	50 ± 23
0		10^{-7}	5 ± 2
	50	10^{-6}	272 ± 122
		10^{-7}	27 ± 12
		10^{-8}	3 ± 1

We contacted a colleague from the LHCb collaboration

Overview of some results

5 6

 $BR(B_s^0 \longrightarrow K^- \pi^- \mu^+ \mu^+)$

Summary

- We studied Lepton-number-violation in b hadrons decays induced by an on-shell Majorana neutrino
- \rightarrow We collaborated with theorists and experimentalists
- → People from LHCb and CMS were involved
- → I would like to repeat this experience with colleagues from the RedFAE

