Desarrollo de un sistema de disparo para el experimento MPD-NICA del JINR

Heber Zepeda-Fernández CINVESTAV-IPN Reunión General de la RED-FAE 2017

September 28, 2017

Contenido

- NICA-JINR
- Beam Monitoring Detector (BMD)
- BMD: Resultados de simulación
- 4 BMD: Resultados del prototipo
- 5 Conclusiones

"Joint Institute for Nuclear Research" (JINR), Dubna, Rusia (1956).

"Joint Institute for Nuclear Research" (JINR), Dubna, Rusia (1956).

"Joint Institute for Nuclear Research" (JINR), Dubna, Rusia (1956).

Elementos descubiertos en el JINR

- 1966 Nobelium: 102
- 1970 Dubnium: 104
- 1999-2005
 - Nihonium: 113.
 - Flevorium: 114.
 - Moscovium: 115.
 - Livermorium: 116.
 - Oganesson: 118.
- Identificación química de Copernicium: 112.
- Sintetizaciónde Tennessine: 117.

"Joint Institute for Nuclear Research" (JINR), Dubna, Rusia (1956).

Áreas de investigación:

- Física Teórica.
- Física de partícula elementales.
- Físca Nuclear Relativista.
- Física de Iones Pesados.
- Física de Energía baja e intermedia.
- Físca Nuclear con Neutrones.
- Física de Materia Condensada.
- Radiobiología.
- Redes Informáticas, Informática y Física Computacional.

A D N A B N A B N

"Joint Institute for Nuclear Research" (JINR), Dubna, Rusia (1956).

Áreas de investigación:

- Física Teórica.
- Física de partícula elementales.
- Físca Nuclear Relativista.
- Física de Iones Pesados.
- Física de Energía baja e intermedia.
- Físca Nuclear con Neutrones.
- Física de Materia Condensada.
- Radiobiología.
- Redes Informáticas, Informática y Física Computacional.

A D N A B N A B N

• E = 4.5 GeVu para iones, E = 12.6 GeV para protones. Nucleotrón desde 1993.

- Propiedades de interacción fuerte en SM: Quarks y gluones.
- Transición de fase entre la materia hadrónica y el QGP.
- Interacciones fuertes en el vacío y simetrías QCD.

Cinvestav

"Nuclotron-based Ion Collider fAcility" (NICA)

- "Baryonic Matter at Nuclotron" (BM@N).
- "The Spin Physics Detector" (SPD).
- "The Multi-Purpose Detector" (MPD).

- ∢ ≣ ▶

MPD

MPD

- Time Projection Chamber (TPC).
- Inner Tracker (IT).
- Time of Flight (TOF).
- Electromagnetic Calorimeter (ECAL).
- Zero Degree Calorimeter (ZDC).
- Fast Forward Detector (FFD).
- Magnetic solenoid.

• Campo magnético de 0.5 T.

MPD

- TPC + IT + TOF + ECAL: p_T suficiente resolución, Determinación del vértice y ID:
 - TOF. kaones $p_T < 1.5 GeV$, (anti)protones $p_T < 3 GeV$,
 - con dE/dx en IT y TPC.

• ECAL: Partículas cargadas y γ .

• ZDC: Clasificación de centralidad.

MPD

• FFD:

- Determinación rápida de la interacción.
- Control de la razón de colisión.
- Posición del punto de interacción.

Las partículas no son relativistas

MPD

• FFD:

- Determinación rápida de la interacción.
- Control de la razón de colisión.
- Posición del punto de interacción.

Las partículas no son relativistas

Nuestro detector entra en acción

THE BEAM MONITORING DETECTOR (BMD)

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

BMD: Características. Detector centellador: Bc404.

Será capaz de:

- Incrementará la sección de pseudorapidez: $1.69 \le |\eta_{BMD}| \le 4.36$.
- Optimización de eventos.
- Centralidad y localización del punto de interacción.
- Estimador de la multiplicidad.
- Sistema de Trigger.
- Monitoreo en el haz.
- Discriminará la centrantalidad del ruido.
- Determinará la sección eficaz absoluta de las reacciones de procesos
- Resolución temporal: 50 ps (Photones de centelleo + tiempo en la cinvesta).

BMD: Simulación.

- Software usado: mpdroot + bmd

	Ring	Minimum radius (cm)	Maximum radius (cm)]
Ì	1	5.1	8.30]
	2	8.5	14.50	220
	3	14.7	23.40	
	4	23.6	42.00	CES?
	5	42.2	73.63	Cinvestav

◆□ → ◆□ → ◆臣 → ◆臣 → ○ ■ → ○ ヘ

BMD: Simulación

Ubicación de BMD:

 に かい で に かい で ま 、 う の で 20/34

BMD: Simulación

Multiplicidad 4 GeV:

BMD: Simulación

Multiplicidad 11 GeV:

CIIIVCSLaV

Localización del punto de interacción

Figure: Relación entre el tiempo de llegada (T_A y T_C) al **BMD** con **posición del punto de interacción**.

Tiempo de resolución de llegada: $\Delta \sigma = |\sigma_A - \sigma_C| = 57.982 \pm 0.509$ ps. Independiente de la geometría.

A la par:

Geant 4

 π^+ E=5 MeV (cuadrados amarillos \rightarrow APD):

 π^+ E=5 MeV (cuadrados amarillos \rightarrow APD):

• Obtener el fotón más rápido en Scorer en cada evento.

 π^+ E=5 MeV (cuadrados amarillos \rightarrow APD):

- Obtener el fotón más rápido en Scorer en cada evento.
- Realizar el fit de distribución $\rightarrow \sigma_i$.

 π^+ E=5 MeV (cuadrados amarillos \rightarrow APD):

- Obtener el fotón más rápido en Scorer en cada evento.
- Realizar el fit de distribución $\rightarrow \sigma_i$.
- Resolución temporal = $\sigma_i \sigma_j$.

BMD: Resultados de simulación

Encontrando la geometría para los 50 ps

a)

Figure: Tamaño: 10 cm. 133.579 \pm 21.803 **ps** $\leq \Delta \sigma \leq$ 226.409 \pm 37.821 **ps**.

b)

Figure: Tamaño: 5 cm. $\Delta \sigma = 12.908 \pm 4.762$ ps.

BMD: Resultados de simulación

Encontrando la geometría para los 50 ps

Figure: Tamaño: 10 cm. 0.963 \pm 0.028 ps $\leq \Delta \sigma \leq$ 97.432 \pm 34.156 ps.

Estudios del Plástico centellador.

Laboratorio de Ciencias de Mteriales en:

- Puebla (BUAP): R = 9.5 cm y 2.54 cm de ancho.
- Sinaloa (UAS): $14 \times 15 \times 2cm^3$.

Centellador comercial de Bicron:

• Bc404: El corte R = 6 cm.

Figure: BUAP (izquierda), Bc404 (centro) y UAS (derecha). Mismo PMT Hamamatsu R5946

Estudios del Plástico centellador.

- Cada 500 m: Desde Sierra Negra (4,530 m) hasta Boca del Río (nivel del mar).
- Presión y altitud: Sensor BMP085 y sistema de procesamiento mínimo (raspberry PI V3.0).

Conclusiones

En resumen...

- Bc404 es el material óptimo.
- BMD será un importante detector para el MPD.
- Falta mucho trabajo por realizar. Listo para antes del 2020.

Miembros de MeXNICA:

- M. en C. Heber Zepeda Fernández.
- Dr. Pedro González Zamora.
- Lic. Luis Valenzuela Cazarez.
- Dr. Alejandro Ayala.
- Dr. Luis Manuel Montaño Zetina.
- Dra. María Elena Tejeda Yeomas.
- Dr. Mario Rodríguez Cahuantzi.
- Dra. Isabel Domínguez.

Preguntas: hzepeda@fis.cinvestav.mx - pedro.gonzalez.zamora@cern.ch luisvc3737@gmail.com

Figure: 1550 V para BUAP, 1600 V para UAS, 1500 V para Bc404

