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Motivation: Quenches

Objective:

Characterize generic out-of-equilibrium states in AdS/CFT

Are there universal rules that govern the evolution?

What is the behavior of the various observables?

What is the nature of the final state?

Simplest dynamical process is a quantum quench:

Hλ = H0 + λ(t, ~x) δH∆ =⇒ Lλ = L0 + λ(t, ~x)O∆

Outcome:


Thermalization: ρ(t)→ ρthermal +O(e−S)

Relaxation: ρ(t)→ ρinitial

Quantum revivals: ρ(t)→ ρ(t − tp)
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Motivation: Observables

One-point functions of local operators Oi thermalize fast

A useful order parameter is entanglement entropy SA

A

B

Hilbert space factorizes Htotal = HA ⊗HB, then define ρA ≡ trB [ρ]

SA = −tr[ρA log ρA]
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Review of the ‘entanglement tsunami’ proposal

[Calabrese & Cardy] showed that for weakly coupled (1 + 1) CFTs:

∆SA(t) = 2t seq , t ≤ tsat = R
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Instantaneous quenches: λ(t) ∼ δ(t) ↔ 〈T00(t)〉 ∼ θ(t)

Large subsystems: R � 1/T

Explanation in terms of free streaming EPR pairs
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Review of the ‘entanglement tsunami’ proposal

Q: How do (strong) interactions affect this result?

Early numerical explorations [Abajo-Arrastia et.al, Balasubramanian et.al]
and analytical work [Hartman & Maldacena, Liu & Suh] showed that:

∆SA(t) = vE seqAΣt , tloc � t � tsat

vE =

√
d

d − 2

(
d − 2

2(d − 1)

) d−1
d

Figure: Pictorial representation of the entanglement tsunami of region A.
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Review of the ‘entanglement tsunami’ proposal

Comments:

vE = 1 in d = 2, as for weakly-coupled theories!
I EE for multiple strips differs for d = 2 [Asplund & Bernamonti]
I Quasiparticle description fails at large-c [Asplund et.al]
I In higher dimensions [Casini, Liu & Mezei]

v free
E =

Γ[d−1
2 ]

√
πΓ[d2 ]

≤ vE

vE ≤ 1 suggests a causality bound
I [Liu & Suh] conjectured that

R(t) ≡ 1

seqAΣ

dSA
dt
≤ vE ≤ 1

I Proof by [Casini, Liu & Mezei] and [Hartman & Afkhami-Jeddi]
I Bound fails for small subsystems! No linear growth [Kundu & Pedraza]
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Models of global quenches in holography

In QFT: deform the theory by an operator O∆ with an homogeneous
time dependent coupling λ(t)

In AdS: turn on the non-normalizable mode of the field dual to O∆

Electric field quench in (3 + 1) is analytically tractable (!)

S =
1

2κ2

∫
d3+1x

√
−g
(
R − 2Λ− F 2

)
A solution for an arbitrary E (v) is: [Horowitz, Iqbal & Santos]

ds2 =
1

z2

(
−f (v , z)dv2 − 2dvdz + dx2 + dy2

)
F = −E (v)dv ∧ dx

where

f (v , z) = 1− z3m(v) , m(v) =
1

2

∫ v

−∞
E (v ′)2dv ′
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Models of global quenches in holography

Another example is a scalar field quench:

S =
1

2κ2

∫
dd+1x

√
−g
(
R − 2Λ− 1

2
(∂φ2)

)
Tractable perturbatively: [Bhattacharyya & Minwalla]

ds2 =
1

z2

[
−f (v , z)dv2 − 2dvdz + g(v , z)(dx2 + dy2)

]
φ = φ(v , z)

where, for any φ0(v):

f (v , z) = 1 +

(
3

4
z2φ̇2

0 − z3m(v)

)
ε2 + · · · , m(v) = −1

2

∫ v

−∞
dt φ̇0

...
φ 0

g(v , z) = 1− 1

4
z2φ̇2

0ε
2 + · · · , φ(v , z) = (φ0 + zφ̇0)ε+ · · ·

Observables are rather insensitive to transients [Joshi et.al.]
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Models of global quenches in holography: AdS-Vaidya

A general theory:

S =
1

2κ2

∫
dd+1x

√
−g (R − 2Λ + Lmatter )

admits an AdS-Vaidya solution:

ds2 =
1

z2

[
−f (v , z)dv2 − 2dvdz + d~x2

]
, f (v , z) = 1− zdm(v)

provided that the stress-tensor is made of null dust:

Tµν =
d − 1

4κ2
zd−1 dm

dv
δvµδ

v
ν (1)

Limitations:
I Phenomenological approach: source is not known
I Is any m(v) physically reasonable? → NEC requires dm/dv ≥ 0
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Models of global quenches in holography: AdS-RN-Vaidya

A further generalization of the AdS-Vaidya geometry is:

f (z , v) = 1− zdm(v) + q(v)2z2(d−1)

which requires:

Tµν =

(
d − 1

4κ2
zd−1 dm

dv
− d − 2

2κ2
z2d−3q(v)

dq

dv

)
δvµδ

v
ν

Assuming m(−∞) = 0, q(−∞) = 0, it interpolates between AdS and
AdS-RN (CFT vacuum to a state with finite T and µ).

NEC is naively violated! but m(v) and q(v) are further constrained
by SSA [Caceres, Kundu, Pedraza & Tangarife]

Charge can be included in the perturbative collapse framework
[Caceres, Kundu, Pedraza & Yang]
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Holographic entanglement entropy

Prescription: [Ryu & Takayanagi]

SA =
Areamin(γA)

4Gd+1
N

γA = codimension-2 surface s.t. ∂γA = ∂A

Homology constraint: γA ∼ A
I ∃ bulk region R s.t. ∂R = γA ∪ A
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Holographic entanglement entropy

Covariant prescription: [Hubeny, Rangamani & Takayanagi]

SA =
Areaext(γA)

4Gd+1
N

γA = codimension-2 surface s.t. ∂γA = ∂A

Homology constraint: γA ∼ A
I ∃ bulk region R s.t. ∂R = γA ∪ A
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Spread of entanglement in (1 + 1) dimensions

For (1 + 1) CFTs EE is known in a closed form! [Balasubramanian et.al]
→ Consider a segment of length ` = 2R and define:

t = 2πTt , l = 2πTR

At t→∞ EE reaches the equilibrium value:

SA =
c

3
log

(
R

ε

)
+

c

3
log

(
sinh l

l

)
≡ Svac + ∆SA

I For l� 1: ∆SA '
cl

3
= seqVA , seq =

πcT

3

The first law reads:
d(∆EA)

d(∆SA)

∣∣∣∣
`

= T

where ∆EA = EVA , E =
πcT 2

6
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Spread of entanglement in (1 + 1) dimensions

For (1 + 1) CFTs EE is known in a closed form! [Balasubramanian et.al]
→ Consider a segment of length ` = 2R and define:

t = 2πTt , l = 2πTR

At t→∞ EE reaches the equilibrium value:

SA =
c

3
log

(
R

ε

)
+

c

3
log

(
sinh l

l

)
≡ Svac + ∆SA

I For l� 1: ∆SA '
cl2

18
=

cπ2T 2`2

18

The first law reads:
d(∆EA)

d(∆SA)

∣∣∣∣
`

= TA [Bhattacharya et.al]

where TA =
3

π`
→ ∆SA =

∆EA

TA
=
EVA

TA
= seqVA
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Spread of entanglement in (1 + 1) dimensions
For t ≤ tsat = l [Balasubramanian et.al]:

SA(t) = Svac + ∆SA(t) , ∆SA(t) =
c

3
log

(
sinh t

l s(l, t)

)
where

l =

√
1− s2

ρs
+

1

2
log

(
2(1 +

√
1− s2)ρ2 + 2sρ−

√
1− s2

2(1 +
√

1− s2)ρ2 − 2sρ−
√

1− s2

)

ρ =
1

2
coth t +

1

2

√
1

sinh2 t
+

1−
√

1− s2

1 +
√

1− s2

One key observation:

vavg
E = 〈R(t)〉 =

1

seqAΣ

∆SA
∆t

=
1

seqAΣ

seqVA

tsat
=

R

tsat
= 1
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Spread of entanglement in (1 + 1) dimensions

Two possibilities:

R(t) = 1 (∀ l, t) → Causality constraint is OK

max[R(t)] > 1 → Causality constraint is violated

It suffices to analyze the early time behavior t� tsat:

ρ =
1

t
+

t

12
+ · · · , s =

t

l

(
1

t
− t

12
+ · · ·

)

∆SA(t) =
ct2

12
+O(t4) = 2πEt2 + · · ·

Therefore,

R(t) =
2πEt
seq

+ · · · → max[R(t)] > 1!
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Spread of entanglement in (1 + 1) dimensions

Numerical results for l = 10−2 and l = 102. R(t)→ 1 as l→∞.
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Perturbative calculation for small intervals

Setup in the gravity side:

For large subsystems one solves for ΓA above and below the shell and
then match the solutions in a perturbatively in the IR [Liu & Suh]

We developed a different perturbative expansion for small subsystems.
In this case the extremal surfaces stay mostly in the UV
[Kundu & Pedraza]
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Perturbative calculation for small intervals

Let us expand the area functional A and embedding φ = {x(z), v(z)} as

A[φ(z);λ] = A(0)[φ(z)] + λA(1)[φ(z)] +O(λ2)

φ(z) = φ(0)(z) + λφ(1)(z) +O(λ2)

The key observation is that:

Aon-shell[φ(z)] =

∫
dz A(0)[φ(0)(z)] + λ

∫
dz A(1)[φ(0)(z)]

+ λ

∫
dz φ

(1)
i (z)

[
���������d

dz

∂A(0)

∂φ′i (z)
− ∂A(0)

∂φi (z)

]
φ(0)

+ · · ·

We consider `T � 1, where T ∼ 1/zH

Through the UV/IR connection ` ∼ z , so this corresponds to z � zH
i.e. near the AdS boundary
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Perturbative calculation for small intervals

Previous numerical results for AdS-RN-Vaidya [Caceres, Kundu]:

Initial quadratic growth

(Quasi)-linear intermediate regime

Continuous saturation

Non-monotonicity in the saturation time as a function of χ = µ/T
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Perturbative calculation for small intervals: the strip

At first order we only need the embedding in pure AdS:

∆S(t) = S(t)− SAdS =
`d−2
⊥ ε

4GNzdH

∫ z∗

0

dz θ(t − z)z
√

1− (z/z∗)2(d−1)

which leads to

∆S(t) =


0 , t < 0

∆Seq ×F(t/tsat) , 0 ≤ t ≤ tsat ,

∆Seq t > tsat

where

∆Seq =

√
πΓ[ 1

d−1
]`d−2
⊥ εz2

∗

8(d + 1)Γ[ d+1
2(d−1)

]zdHG
(d+1)
N

F(x) =
2Γ[ d+1

2(d−1)
]x2

√
πΓ[ 1

d−1
]

[√
1− x2(d−1) + d−1

2 2F1

(
1
2
, 1
d−1

, d
d−1

, x2(d−1)
)]
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Perturbative calculation for small intervals: the strip

Plots for ∆S(t) (for different µ/T ) and R(t) (for different d):
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Initial quadratic growth regime:

∆S =


AΣ

4GN

(
4πT

d

)d (
1 +

d2(d − 2)

16π2

( µ
T

)2

+ · · ·
)
t2, T � µ

AΣ

4GN

2(d − 2)d−1µd

dd/2(d − 1)d/2−1

(
1 +

2πd1/2

(d − 1)1/2

T

µ
+ · · ·

)
t2, T � µ

I Same behavior than for large intervals [Liu & Suh]. Universal!
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Perturbative calculation for small intervals: the strip

Quasi-linear growth regime with:

max[R(t)] =
4(d − 1)3/2Γ[ 3d−1

2(d−1)
]Γ[ d

2(d−1)
]

d
d

2(d−1) Γ[ 1
2(d−1)

]Γ[ 1
d−1

]
=



3/2 , d = 2

0.946 , d = 3

0.704 , d = 4

π/d → 0 , d →∞

I Causality constraint is violated only for d = 2.
I However 〈R(t)〉 ≤ 1 (∀ d).

In this approximation tsat = z∗ ∼ ` and tsat/t
(0)
sat = 1.

At next order we find:

tsat

t
(0)
sat

= 1− α(d)
( µ
T

)2

(T `)d +O
( µ
T

)4

+O (T `)2(d−1) (2)

where α(d) > 0! Next order is positive → non-monotonic.
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Perturbative calculation for small intervals: the ball

∆S(t) =
εAΣz

d−2
∗

8G
(d+1)
N Rd−2zdH

∫ z∗

0

dz θ(t − z)z
[
1− (z/z∗)

2
] d−1

2

which leads to

∆S(t) =


0 , t < 0

∆Seq × G(t/tsat) , 0 ≤ t ≤ tsat

∆Seq t > tsat

where

∆Seq =
R2AΣε

8(d + 1)zdHG
(d+1)
N

, G(x) = 1−
(

1− x2
) d+1

2
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Linear response of entanglement entropy

The entanglement growth looks like a convolution integral!

∆Ss(t) ∼
∫ t∗

0

dt′ θ(t − t′)t′
√

1− (t′/t∗)2(d−1) = f(t) ∗ gs(t)

∆Sb(t) ∼
∫ t∗

0

dt′ θ(t − t′)t′
[
1−

(
t′/t∗

)2
] d−1

2
= f(t) ∗ gb(t)

where f(t) ∼ θ(t) is the source and

gs(t) ∼ t
√

1− (t/t∗)2(d−1), gb(t) ∼ t
[
1− (t/t∗)

2
] d−1

2

are response functions for the strip and the ball, respectively.

Q: Can we understand this statement better? f(t) comes from the mass
term m(v), do these expressions hold for more general sources?
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Fefferman-Graham expansion for AdS spaces

Any asymptotically AdS metric can be written as:

ds2 =
1

ρ2

(
gµν(ρ, xµ)dxµdxν + dρ2

)
where gCFT

µν = gµν(0, xµ). Assuming gµν(ρ, xµ) = ηµν + δgµν(ρ, xµ):

δgµν = a ρd 〈Tµν〉+ ρ2d
(
a1 〈TµαT

α
ν〉+ a2 ηµν〈TαβT

αβ〉
)

+ . . .

Corrections from additional operators (dual to vector Aµ or scalar φ):

δgµν = a ρd 〈Tµν〉+ ρ2d−2 (b1 〈JµJν〉+ b2 ηµν〈JαJα〉) + . . .

δgµν = a ρd 〈Tµν〉+ c ρ2∆〈O2〉+ . . .

The last term can dominate if d
2 − 1 < ∆ < d

2 (do not consider these)

Juan F. Pedraza (UvA) Linear response of entanglement entropy June 7, 2017 27 / 34



Entanglement entropy for small subsystems in equilibrium
Indeed, for static spacetimes: [Bhattacharya et.al.]

∆SA = 〈T00〉
VA

TA
=

∆EA

TA

where

Ts =
2(d2 − 1)Γ[ d+1

2(d−1) ]Γ[ d
2(d−1) ]2

√
πΓ[ 1

d−1 ]Γ[ 1
2(d−1) ]2`

, Tb =
d + 1

2πR

Notice that TA can also be obtained from the modular Hamiltonian:

Hb = 2π

∫
A

R2 − r2

2R
T00(x) dd−1x

↓

∆Sb = 2πδ〈T00(x)〉Ωd−2

∫ R

0

R2 − r2

2R
rd−2dr =

2πδ〈T00(x)〉Ωd−2R
d

d2 − 1

Holds for local quenches! [Nozaki, Numasawa & Takayanagi]
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Entanglement entropy after general global quenches

For a general AdS-Vaidya:

〈T00(t)〉 ≡ ε(t) =
(d − 1)m(t)

16πG
(d+1)
N

, 〈Tii (t)〉 ≡ P(t) =
m(t)

16πG
(d+1)
N

And entanglement entropy satisfies:

∆SA(t) =

∫ ∞
−∞

dt ′ f(t − t ′)gA(t ′)

where f(t) = ε(t) and

gs(t) =
2πAΣt

d − 1

√
1− (t/t∗)2(d−1) [θ(t)− θ(t − t∗)]

gb(t) =
2πAΣt

d − 1

[
1− (t/t∗)

2
] d−1

2
[θ(t)− θ(t − t∗)]
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Entanglement entropy after general global quenches
Can be integrated by parts to obtain:

∆SA(t) =
∆EA(t)

TA
+

∫ ∞
∞

dt ′
dε(t − t ′)

dt
GA(t ′)

First law recovered for adiabatic quenches, provided:

dε(t ′)

dt ′
t∗ � ε(t) , ∀ t ′ ∈ (t − t∗, t)

Second term can be interpreted as a kind of “relative entropy”

ΥA(t) =
∆EA(t)

TA
−∆SA(t) ≥ 0

I Measures “distance” of out-of-equilibrium state w.r.t. equilibrium
I Positivity implies SSA!
I Can be rewritten using Ward identity, e.g. dε(t)

dt = 〈O∆(t)〉 dJ∆(t)
dt

Juan F. Pedraza (UvA) Linear response of entanglement entropy June 7, 2017 30 / 34



Entanglement entropy after general global quenches

Second term can be interpreted as a kind of “relative entropy”

ΥA(t) =
∆EA(t)

TA
−∆SA(t) ≥ 0

I Measures “distance” of out-of-equilibrium state w.r.t. equilibrium
I Positivity implies SSA!
I Can be rewritten using Ward identity, e.g. dε(t)

dt = 〈O∆(t)〉 dJ∆(t)
dt

Example 1. Instantaneous quench: ε(t) = ε0 θ(t)
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Entanglement entropy after general global quenches

Example 2. Linear-quench: ε(t) = αt [θ(t)− θ(t − tq)] +αtqθ(t − tq)
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In the fully driven regime ΥA = constant, so we recover [O’Bannon et.al.]

d∆SA(t)

dt
=

1

TA

d∆EA(t)

dt
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Conclusions

Spread of EE after instantaneous quenches follow universal rules:
I For large subsystems the linear growth regime is universal, independent

of the shape of Σ, but details depend on the final state (T , µ)
I For small subsystems the evolution depends on Σ, but is universal with

respect to the state (only depends on ε(T , µ))

Causality constrains the instantaneous rate of EE growth only for large
subsystems. Average growth is always bounded by the speed of light.

Spread of EE for small systems is described by a linear response
I Q: Field theory interpretation of gA(t)?
I Q: Fluctuation-dissipation theorems?

The quantity ΥA(t) resembles a “relative entropy”. Useful order
parameter to characterize out-of-equilibrium excited states
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Conclusions

(a) (b)

T T
T ∼ t−1

q T ∼ t−1
q

` `

` = T−1 ` = T−1

`� T−1 `� T−1

`� T−1 `� T−1

Thermal

Tsunami

Quasi-
particles

Linear response First law

Figure 8. Schematic diagram of the different regimes of interest of entanglement propagation for
(a) fast quenches tq → 0 and (b) slow quenches tq →∞. The blue region corresponds to the small
subsystem limit. The dashed vertical line in this region is a separatrix that signals the point at
which the first law of entanglement starts to be valid. The dashed regions in the upper right corners
correspond to the large subsystem limit. For fast quenches the spread of entanglement this region
is well described by the heuristic entanglement tsunami picture, however in some special cases it
admits an microscopic interpretation in terms of quasi-particles. For slow enough quenches the
system can be considered very close to equilibrium so the standard rules of thermodynamics apply.
In this limit entanglement entropy reduces to thermal entropy, which evolves adiabatically.

thermalized. Furthermore, in contrast to δSA(t) or the rate of growth RA(t), the quantity
ΥA(t) undergoes a discontinuous first-order transition at the end of the driven phase of a
quench, which clearly indicates the approach to thermality that follows.

After incorporating the instantaneous quenches studied in [61] in our framework, we
turn to quenches of finite duration tq with a power-law time dependence ε(t) ∝ tp. Since
our convolution expression is linear in the source, these are in principle general enough to
determine δSA(t) for any quench that is analytic in the interval t ∈ (0, tq). Quenches of
finite duration exhibit some distinct features. Most notably, the rate of growth of entangle-
ment decreases with increasing tq for a fixed p. Furthermore, inspection of ΥA(t) confirms
that the system is maximally out-of-equilibrium after an instantaneous quench. This sets
an upper bound, ΥA(t) ≤ δEeq

A /TA, which can be attained right after an instantaneous
quench, or at t = tq in the limit p → ∞. We also commented on the results of [62] for
linearly increasing sources and showed that they can be easily understood in term of the
linear response formalism.

Finally, we studied the evolution of entanglement entropy after quenches that include
a periodic source. We focused on sources with a single frequency ε(t) ∝ sin(ωt). However,
given the linearity of the convolution integral, our results can be easily generalized to any
periodic source that admits a Fourier decomposition. Following an initial transient regime,
δSA(t) and ΥA(t) are both periodic but out of phase with respect to the energy density.

– 29 –

Figure: Schematic diagram of the different regimes of interest of entanglement

propagation for (a) fast quenches tq → 0 and (b) slow quenches tq →∞.
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