Linear response of entanglement entropy
from holography

Juan F. Pedraza

X

t!

X

UNIVERSITEIT VAN AMSTERDAM

June 7, 2017

Based on:

ARX1V:1602.05934, SANDIPAN KuNnDU & JFP
ARX1V:1705.10324, SAGAR LOKHANDE, GERBEN OLING & JFP

Juan F. Pedraza (UvA) Linear response of entanglement entropy June 7, 2017 1/34



Outline

© Motivation
© Models of global quenches in holography

© Entanglement entropy after instantaneous quenches
@ Spread of entanglement in (1 4+ 1)—dimensional CFTs
@ Perturbative computation in higher dimensions

e Linear response of entanglement entropy
@ Fefferman-Graham expansion
@ Entanglement entropy after general global quenches
@ General properties and examples

© Conclusions

Juan F. Pedraza (UvA) Linear response of entanglement entropy June 7, 2017

2/34



Motivation: Quenches

Objective:

Characterize generic out-of-equilibrium states in AdS/CFT

@ Are there universal rules that govern the evolution?
@ What is the behavior of the various observables?
@ What is the nature of the final state?

Simplest dynamical process is a quantum quench:
Hy = Ho + A(t, xX) 0Ha =  L)y= Lo+ \t,X)On
Thermalization: p(t) — pthermal + O(efs)
Outcome: { Relaxation: p(t) = pinitial

Quantum revivals: p(t) — p(t — tp)
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Motivation: Observables

@ One-point functions of local operators O; thermalize fast

@ A useful order parameter is entanglement entropy Sp

Hilbert space factorizes Hioral = Ha ® Hp, then define pa = trg[p]

Sa = —tr[palog pa
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Review of the ‘entanglement tsunami’ proposal

[Calabrese & Cardy| showed that for weakly coupled (1 + 1) CFTs:

ASA(t) =2t Seq , t<tat=R

ASp/ASy
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@ Instantaneous quen

@ Large subsystems:
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ches: A\(t) ~ d(t) <> (Too(t)) ~ 6(t)
R>1/T

@ Explanation in terms of free streaming EPR pairs
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Review of the ‘entanglement tsunami’ proposal

Q: How do (strong) interactions affect this result?

Early numerical explorations [Abajo-Arrastia et.al, Balasubramanian et.al]
and analytical work [Hartman & Maldacena, Liu & Suh] showed that:

ASA(t) = VESeqAst, toc K t <K tsat

d—1
[ d d—2 \7
E"Va—2\2d-1)

Figure: Pictorial representation of the entanglement tsunami of region A.
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Review of the ‘entanglement tsunami’ proposal

Comments:
@ ve =1 in d = 2, as for weakly-coupled theories!

» EE for multiple strips differs for d = 2 [Asplund & Bernamonti]
» Quasiparticle description fails at large-c [Asplund et.al]
» In higher dimensions [Casini, Liu & Mezei]

d—1
free __ [ ]

g fr[dl

o vg <1 suggests a causality bound
» [Liu & Suh] conjectured that
1 dSa
t) = — <vg<l1
A1) = Ay dt = ES

» Proof by [Casini, Liu & Mezei] and [Hartman & Afkhami-Jeddi]
» Bound fails for small subsystems! No linear growth [Kundu & Pedraza]
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Models of global quenches in holography

@ In QFT: deform the theory by an operator Oa with an homogeneous
time dependent coupling A(t)

@ In AdS: turn on the non-normalizable mode of the field dual to Oa

o Electric field quench in (3 + 1) is analytically tractable (!)

S= /ﬁ“&¢( — 2\ — F?)

2k2

A solution for an arbitrary E(v) is: [Horowitz, Igbal & Santos]

#::?@m@wtwm+w+w)
F = —E(v)dv Adx

where

flv,z)=1-22m(v), m(v)= 1/V E(V)?dV/
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Models of global quenches in holography

@ Another example is a scalar field quench:

S= 2—}{2 / d*ix/—g (R — 2N — %(8¢2)>

Tractable perturbatively: [Bhattacharyya & Minwalla]

1
ds?> = = [—f(v, z)dv? — 2dvdz + g(v, z)(dx? + dyz)]

6 = ov.2)

where, for any ¢o(v):

f(v,z) = 1+ (%Z2¢% — z3m(v)> -, mv)= —% /V dt ¢ ¢
gv.2) = 1- 282+ o(v.2) = (do+ zdo)et -

Observables are rather insensitive to transients [Joshi et.al.]
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Models of global quenches in holography: AdS-Vaidya

o A general theory:

1
S = — / dd+1X\/—g(R —2A + £matter)

2K2
admits an AdS-Vaidya solution:
1
ds? = 2 [—f(v,z)dv2 — 2dvdz + d>_<'2] . f(v,z) =1—2z9m(v)
provided that the stress-tensor is made of null dust:

d—1 d ldm(S"(SV (1)

T = 452 dv #7

@ Limitations:
» Phenomenological approach: source is not known

» Is any m(v) physically reasonable? — NEC requires dm/dv > 0
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Models of global quenches in holography: AdS-RN-Vaidya

@ A further generalization of the AdS-Vaidya geometry is:
f(z,v) =1—z9m(v) + g(v)?z2(4~)

which requires:

d—1 gadm d—=2 555 dq\ ooy
Twz(wz et aWg, ) oud

@ Assuming m(—oc0) =0, g(—o0) = 0, it interpolates between AdS and
AdS-RN (CFT vacuum to a state with finite T and p).

e NEC is naively violated! but m(v) and g(v) are further constrained
by SSA [Caceres, Kundu, Pedraza & Tangarife]

@ Charge can be included in the perturbative collapse framework
[Caceres, Kundu, Pedraza & Yang]
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Holographic entanglement entropy

AdS 4,4
Ao

YA

Prescription: [Ryu & Takayanagi]

S, Areamin(ya)
4Gt

@ 4 = codimension-2 surface s.t. 0v4 = 0A
@ Homology constraint: y4 ~ A
» J bulk region R s.t. R =71UA
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Holographic entanglement entropy

AdS 4,4
Ao

YA

Covariant prescription: [Hubeny, Rangamani & Takayanagi]

S, Areac,i(ya)
AT et

@ 4 = codimension-2 surface s.t. 0v4 = 0A
@ Homology constraint: y4 ~ A
» J bulk region R s.t. R =71UA
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Spread of entanglement in (1 + 1) dimensions

For (1 +1) CFTs EE is known in a closed form! [Balasubramanian et.al]

— Consider a segment of length ¢ = 2R and define:
t=2nTt, [=27TR

@ At t — oo EE reaches the equilibrium value:

R inh [
S = < log | — ) + ¢ log >N = Svac + ASy
3 € 3 [

cl wcT
> For[>>1: ASAﬁ?:SquA’ seq:T
. d(AE,
The first law reads: (AEn) =
d(ASa) |,
ncT?
where AEpA=EVy, &= 5
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Spread of entanglement in (1 + 1) dimensions

For (1+ 1) CFTs EE is known in a closed form! [Balasubramanian et.al]

— Consider a segment of length ¢ = 2R and define:

t=2rTt, (=27TR

@ At t — oo EE reaches the equilibrium value:

R inh [
Sa=log [ 2] + Stog [ 1M0) = Sy + ASH
3% )3 (

c?  cm?T22

F 1: ASp> — = ——
» For [« Sa 18 18
, d(AEp)
The first | ds: = Ta | [Bhattach t.al
e first law reads d(BSA |, A | [Bhattacharya et.al]
3 AEy  EVa
where Ta= ﬁ — ASA = _TA = _TA = Seq Va
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Spread of entanglement in (1 + 1) dimensions
For t < tgat = [ [Balasubramanian et.al]:

inht
Sa(t) = Suac + ASA(),  ASa(t) = g log ([Ss'?[ t))

where

(o Vi=s + Liog (2(1+v1—52)p2+25p—\/1—52>

ps 2 T\ 21+ VI-2)p2—2sp—1- 52

1 1 1 1—+1—52
p=cotht+ 4/ —5—+ u
2 2\ sinh“t 1+ +vV1-—52

One key observation:

1 ASy 1 sqVa R
SquZ At squZ tsat tsat

V2 = (R(1)) =1
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Spread of entanglement in (1 + 1) dimensions
Two possibilities:

e R(t)=1 (VI[,t) — Causality constraint is OK
e max[%i(t)] > 1 — Causality constraint is violated

It suffices to analyze the early time behavior t < tsat:

1ot Sot(1 ot

P=i 12 ’ “i\t 1

ct? 4 2
ASA(t) = 75 +O(t) = 2wt + -
Therefore,
2
R(t) = :& S maxR(e)] > 1
eq
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Spread of entanglement in (1 + 1) dimensions

Numerical results for [ = 1072 and [ = 10%. 9i(t) — 1 as [ — oo.

ASp/ASy R

10 14f

08 12}
-

06 pyud

04 0.6
0.4f
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‘ ‘ ‘ ‘ ‘ ot ‘ ‘ ‘ ‘ | th
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Perturbative calculation for small intervals

Setup in the gravity side:

@ For large subsystems one solves for ['4 above and below the shell and
then match the solutions in a perturbatively in the IR [Liu & Suh]

@ We developed a different perturbative expansion for small subsystems.
In this case the extremal surfaces stay mostly in the UV
[Kundu & Pedrazal
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Perturbative calculation for small intervals

Let us expand the area functional A and embedding ¢ = {x(z), v(z)} as

Alp(2); Al = AV[p(2)] + MNPV [(2)] + O(N?)
#(z) = 69(2) + 26D (2) + O(N?)

The key observation is that:

Aonshen[6(2)] = / dz A9[30(2)] + A / dz A[¢(2)]

. d aA(O) _
+)\/dz¢>,- (2) {* z) 0¢i(z) 4>(°>+

o We consider /T < 1, where T ~ 1/zy

e Through the UV/IR connection ¢ ~ z, so this corresponds to z < zy
i.e. near the AdS boundary
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Perturbative calculation for small intervals

Previous numerical results for AdS-RN-Vaidya [Caceres, Kundul]:

Athermal e
02 o 115
i p
d ?
0.0 L .
4 1.10] y p.
-02 _——""_“-""“ //
- 1.03 y
e
-0.4 P
P
1,00k~ -
-0.6 - P
-0.8 ) L
0.0 0.5 1.0 1.5 3 Y 3 & I iy X

Initial quadratic growth
(Quasi)-linear intermediate regime

Continuous saturation

Non-monotonicity in the saturation time as a function of x = u/T
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Perturbative calculation for small intervals: the strip

At first order we only need the embedding in pure AdS:

61_25 Zse \/—2
= —_ = — —_ —_ (dil)
AS() = S() ~ Sns = 52 /0 dz0(t — 2)2\/1 - (2/2.)

which leads to

0, t<0
AS(t) = § ASeq x F(t/tsat), 0<t< tat,

ASeq t > teat
where as
A - VTGS ez

eq — d
8(d + N[z 5)z 6y
2525 1< .
Fo) = = 2 [VI—@0 0+ 5 (4 gk g0
d—1
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Perturbative calculation for small intervals: the strip
Plots for AS(t) (for different 11/ T) and QR(t) (for different d):

ASa R
0.30} L4
025 ii
0.20f osl
015} 06l
0.0} o0a4f
005} 02

0.02 0.64 0.66 0.68 0.‘].0t
@ Initial quadratic growth regime:
As (4T’ d?(d —2) /2 2

m(7> (”W(?) Tt T

As  2(d —2)9 1, ord? T
As 2d=2)" 1 i Zi)e T<u
4Gy d9/2(d —1)d/2-1 (d—1)2 p

AS =

» Same behavior than for large intervals [Liu & Suh]. Universal!
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Perturbative calculation for small intervals: the strip

@ Quasi-linear growth regime with:

3/2, d=2
4(d — 1) [29=L1 [525] 0.946, d=3
max[R(t)] = A
AT 5 A 0.704, d=4
w/d =0, d—

» Causality constraint is violated only for d = 2.
» However (R(t)) <1 (V d).

@ In this approximation tst = z ~ £ and tsat/tgt) =1.

@ At next order we find:

tat o % d 1% 2(d—1)
o= a(d)(T) (T0) +0(T) +O(TY)

where a(d) > 0! Next order is positive — non-monotonic.
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Perturbative calculation for small intervals: the ball

AS() = A2 /O dz6(t — 2)z [1 - (z/z*)z] =

8GRIz

which leads to

0, t<0
As(t) = Aseq X g(t/tsat), 0 S t S tsat
ASq t > tat
where , "
RAse =
eqz—z(d_H), g(X)Zl—(l—x2)2
8(d + 1)z8 Gy
ASa R
1.4f
1.2}
0.015}
1.0f
0.010[ 08
0.6F
0.005} 0.4¢
0.2f
002 004 006 008 010 012 02 04 06 08 10"
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Linear response of entanglement entropy

@ The entanglement growth looks like a convolution integral!

AS(t) ~ /t* dt’' 0(t — t)t'\/1 — (t'/£.)206=D = §(t) * ga(t)

d—1
2

ASp(t) ~ /0:* dt' o(t — t')t' [1 — (t’/t*)2] = §(t) * gu(t)

where f(t) ~ 0(t) is the source and

B(6) ~ 1y/1= (/L0 () ~ e [1- (t/e.)] -

are response functions for the strip and the ball, respectively.

Q: Can we understand this statement better? f(t) comes from the mass
term m(v), do these expressions hold for more general sources?
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Fefferman-Graham expansion for AdS spaces

Any asymptotically AdS metric can be written as:

_1

ds? e (g (p, x*)dxtdx” + dp?)

CFT

where giiT = g,,(0,x*). Assuming gy (p, ") = M + 68w (0, XH):

08w = 20° (Tuw) + 7 (a1 (T T + 22mu(Tas T°) + ..
Corrections from additional operators (dual to vector A, or scalar ¢):

0guw = ap? (Tow) + p* 2 (by (Judy) + b2 M (Jad®)) + ...
g = ap? (Tu) +cp®(0%) + ...

The last term can dominate if % —-1<A< % (do not consider these)
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Entanglement entropy for small subsystems in equilibrium
Indeed, for static spacetimes: [Bhattacharya et.al.]

VA AEA
AS, = (T,
A = (Too) — Ta = Ta
where ) g1 )
2(d )r[z(d+ 1 ]r[z(d 1)] d+1
S e 2R

Notice that T4 can also be obtained from the modular Hamiltonian:

R2 _ 2
Hy = 27 / " Too(x) d"1x
A

2R
l
R R2 — r2 d—2 27T(5<T00(X)>Qd_2Rd
ASb = 27T(5<T00(X)>Qd_2/0 R r dr = 2 — 1

Holds for local quenches! [Nozaki, Numasawa & Takayanagi]
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Entanglement entropy after general global quenches

For a general AdS-Vaidya:

(Too(t) = e(t) = % (Tu(t)) = P(e) = 16%&2“)
And entanglement entropy satisfies:
as(0) = [ d'i(e - V)aalt)
where §(t) = ¢(t) and
(1) = L1 (10200 [o(8) — 0(1 — 1)
(6) = 27250 (1 e/ 2] T fo(e) — ot - )
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Entanglement entropy after general global quenches
Can be integrated by parts to obtain:

00 Y,
AS(t) = AET‘“) +/ dt’ dg(tdt)@A(t')
A 00 t

@ First law recovered for adiabatic quenches, provided:

de(t')

dt’ te < g(t), Vit € (t—t,t)

@ Second term can be interpreted as a kind of “relative entropy”

TA(t) = AE_,?A(t) — ASA(t) >0

» Measures “distance” of out-of-equilibrium state w.r.t. equilibrium
» Positivity implies SSA!

» Can be rewritten using Ward identity, e.g. dz(tt) = <(9A(t)>%t(t)
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Entanglement entropy after general global quenches
@ Second term can be interpreted as a kind of “relative entropy”

Ta(t) = %;‘(t) — ASA(t) > 0

> Measures “distance” of out-of-equilibrium state w.r.t. equilibrium
» Positivity implies SSA!

» Can be rewritten using Ward identity, e.g. di,—(tt) = (Oa(t)) d7a(t)

dt

e Example 1. Instantaneous quench: £(t) = £q 0(t)

TaTa/AEa
1.0

0.8f
0.6f
0.41

0.2

‘ S t/ tsat
-02 02 04 06 08 10 12
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Entanglement entropy after general global quenches
e Example 2. Linear-quench: ¢(t) = at [0(t) — 0(t — tq)] + aty(t — tg)

+

| |
02 04 06 08 10 12 -0.2 02 04 06 08 10 12

-0.2 02 04 06 08 10 12

In the fully driven regime T4 = constant, so we recover [O'Bannon et.al.]

dASA(t) - i dAEA(t)

dt Ta dt
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Conclusions

Spread of EE after instantaneous quenches follow universal rules:
» For large subsystems the linear growth regime is universal, independent
of the shape of X, but details depend on the final state (T, )
» For small subsystems the evolution depends on ¥, but is universal with
respect to the state (only depends on (T, 1))

Causality constrains the instantaneous rate of EE growth only for large
subsystems. Average growth is always bounded by the speed of light.
@ Spread of EE for small systems is described by a linear response

» Q: Field theory interpretation of ga(t)?
» Q: Fluctuation-dissipation theorems?

The quantity T a(t) resembles a “relative entropy”. Useful order
parameter to characterize out-of-equilibrium excited states
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Conclusions

Linear response
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Figure: Schematic diagram of the different regimes of interest of entanglement

propagation for (a) fast quenches t, — 0 and (b) slow quenches t; — .
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