Desarrollo de la nueva electrónica del Telescopio centellador de rayos cósmicos para la detección de partículas de alta energía

Marcos A. Anzorena Méndez anzorena@geofisica.unam.mx

11 de mayo de 2017

Posgrado en ciencias de la Tierra — Instituto de Geofísica Universidad Nacional Autónoma de México

Introducción

Motivación: El Telescopio centellador de rayos cósmicos

Solución propuesta: Time over threshold

Desarrollo de la nueva electrónica

Proceso de calibración

Importancia de detectar neutrones solares

Características de la detección en superficie:

- 1. Es esencial medir la energía y tiempo de arribo.
- 2. Sólo detectamos neutrones muy energéticos (> 100 MeV).
- 3. Los telescopios de neutrones deben colocarse a gran altura.

Telescopio centellador de rayos cósmicos (SciCRT)

Construcción del telescopio

\approx 15000 barras de centelleo en total !

Modo de operación del telescopio

Arquitectura del sistema de adquisición de datos del SciCRT

¿Por qué necesitamos nuevas FEBs?

- No existen suficientes para completar la instalación del SciCRT.
- La construcción es cara.
- El diseño no está optimizado para detectar rayos cósmicos.
- Debemos pensar en la operación a largo plazo.

La técnica de time over threshold

10

Arquitectura para time over threshold

- Deposición muones: 15 pe.
- Máxima deposición neutrones: $\approx 250 \, pe$.
- 1 fotoelectron: $\approx 10 \,\mu A$, 2 ns.

Caracterización de la señal de radiación

Carga residual en función del tiempo

Diseño del circuito pre-amplificador

Pruebas del circuito con el miniscibar

- Configuración:
 - Alto voltaje -800 V.
 - Nivel de discriminación $\ge 200 \text{ mV}.$
- Características de la señal de salida:
 - Amplitud $\approx 300 \, mV.$
 - Tasa de cuentas ≈ 30 Hz.

- Configuración:
 - Alto voltaje -800 V.
 - Nivel de discriminación $\ge 200 \text{ mV}.$
- Características de la señal de salida:
 - Amplitud $\approx 300 \, mV.$
 - Tasa de cuentas \approx 30 Hz.

Tasa máxima de cuentas: 1 kHz

Salida del amplificador

Escala vertical: 100 mV/div Escala horizontal: 100 ns/div

Discriminación LVDS

Escala vertical: 500 mV/div Escala horizontal: 50 ns/div

Diseño del TDC (time to digital converter)

Sistema de calibración LED

- Necesario para el desarrollo de la nueva electrónica.
- Calibración periódica del sistema de adquisición.

Método para controlar la intensidad luminosa del LED

- Controlando tiempo de emisión $dt P = \frac{dN_{\gamma}}{dt}h\nu$.
- Distancia de la fuente al MAPMT distribución angular.
- Controlando voltaje de polarización directa V_D .

Descripción del experimento

Optimización de la FEB para su operación en el telescopio

- Simulación por software/hardware.
 - Obtener single photo-electron response del MAPMT.
 - Señal a la salida del MAPMT: $V_o = \sum_{i=1}^{n_{phe}} v(t t_j).$
 - *n_{phe}* depende de *photon yield* y atenuación.
 - *t_j* caracteriza el retardo de propagación y *time spread*.

Objetivos a corto plazo

- Finalizar diseño del sistema LED.
- Finalizar el diseño del TDC.
- Calibrar el circuito para máxima deposición de energía.
- Implementar lectura de 64 canales.
- Instalar prototipo en Sierra Negra.