Forward physics with proton tagging at the LHC: from QCD to extra-dimensions

Christophe Royon University of Kansas, Lawrence, USA

Seminar at UNAM, Mexico, September 6 2017

- Pomeron structure in terms of quarks/gluons
- Tests of BFKL resummation
- Photon exchanges processes and beyond standard model physics
- Anomalous quartic $\gamma\gamma\gamma\gamma\gamma$ couplings using intact protons
- Fast timing detectors: SAMPIC chip, Si, Diamonds...

Definition of diffraction: example of HERA

HERA: ep collider who closed in 2007, about 1 fb⁻¹ accumulated

DIS and Diffractive event at HERA

Definition of diffraction: example of HERA

- Typical DIS event: part of proton remnants seen in detectors in forward region (calorimeter, forward muon...)
- HERA observation: in some events, no energy in forward region, or in other words no colour exchange between proton and jets produced in the hard interaction
- Leads to the first experimental method to detect diffractive events: rapidity gap in calorimeter: difficult to be used at the LHC because of pile up events
- Second method to find diffractive events: Tag the proton in the final state, method to be used at the LHC (example of AFP project)

Diffractive kinematical variables

- Momentum fraction of the proton carried by the colourless object (pomeron): $x_p = \xi = \frac{Q^2 + M_X^2}{Q^2 + W^2}$
- Momentum fraction of the pomeron carried by the interacting parton if we assume the colourless object to be made of quarks and gluons: $\beta = \frac{Q^2}{Q^2 + M_X^2} = \frac{x_{Bj}}{x_P}$
- 4-momentum squared transferred: $t = (p p')^2$

Measurement of the diffractive structure function F_2^D

- Measurement of the diffractive cross section using the rapidity gap selection over a wide kinematical domain in (x_P, β, Q²) (same way as F₂ is measured, there are two additional variables for diffraction, t is not measured)
- Use these data to make QCD fits using NLO Dokshitzer Gribov Lipatov Altarelli Parisi evolution equation and determine the pomeron structure in quarks and gluons: → allows to predict inclusive diffraction at Tevatron/LHC
- At low $\beta :$ evolution driven by $g \to q \bar{q},$ at high $\beta, \, q \to q g$ becomes important
- Take all data for $Q^2 > 8.5 \text{ GeV}^2$, $\beta < 0.8$ to be in the perturbative QCD region and avoid the low mass region (vector meson resonances)

$$\frac{dF_2^D}{d\log Q^2} \sim \frac{\alpha_S}{2\pi} \left[P_{qg} \otimes g + P_{qq} \otimes \Sigma \right]$$

Parton densities in the pomeron (H1)

- Extraction of gluon and quark densities in pomeron: gluon dominated
- Gluon density poorly constrained at high β

Diffraction at Tevatron/LHC

Kinematic variables

- *t*: 4-momentum transfer squared
- ξ_1, ξ_2 : proton fractional momentum loss (momentum fraction of the proton carried by the pomeron)
- $\beta_{1,2} = x_{Bj,1,2}/\xi_{1,2}$: Bjorken-x of parton inside the pomeron
- $M^2 = s\xi_1\xi_2$: diffractive mass produced
- $\Delta y_{1,2} \sim \Delta \eta \sim \log 1/\xi_{1,2}$: rapidity gap
- See also the talks by Beatriz Gay-Ducati, Victor Goncalves, Sandro de Souza

What is AFP/CT-PPS?

- Tag and measure protons at ± 210 m: AFP (ATLAS Forward Physics), CT-PPS (CMS TOTEM Precision Proton Spectrometer)
- All diffractive cross sections computed using the Forward Physics Monte Carlo (FPMC)
- Sensitivity to high mass central system, X, as determined using AFP/CT-PPS: Very powerful for exclusive states: kinematical constraints coming from AFP and CT-PPS proton measurements

Hard diffraction: A difficulty to go from HERA to LHC: survival probability

- Use parton densities measured at HERA to predict diffractive cross section at the LHC
- Factorisation is not expected to hold: soft gluon exchanges in initial/final states
- Survival probability: Probability that there is no soft additional interaction, that the diffractive event is kept
- Value of survival probability assumed in these studies: 0.1 at Tevatron (measured), 0.03 at LHC (extrapolated)

Forward Physics Monte Carlo (FPMC)

- FPMC (Forward Physics Monte Carlo): implementation of all diffractive/photon induced processes
- List of processes
 - two-photon exchange
 - single diffraction
 - double pomeron exchange
 - central exclusive production
- Inclusive diffraction: Use of diffractive PDFs measured at HERA, with a survival probability of 0.03 applied for LHC
- Central exclusive production: Higgs, jets...
- FPMC manual (see M. Boonekamp, A. Dechambre, O. Kepka, V. Juranek, C. Royon, R. Staszewski, M. Rangel, ArXiv:1102.2531)
- Survival probability: 0.1 for Tevatron (jet production), 0.03 for LHC, 0.9 for γ -induced processes
- Output of FPMC generator interfaced with the fast simulation of the ATLAS detector in the standalone ATLFast++ package

Hard diffraction at the LHC

- Dijet production: dominated by gg exchanges; γ+jet production: dominated by qg exchanges (C. Marquet, C. Royon, M. Saimpert, D. Werder, arXiv:1306.4901)
- Jet gap jet in diffraction: Probe BFKL (C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010; O. Kepka, C. Marquet, C. Royon, Phys. Rev. D79 (2009) 094019; Phys.Rev. D83 (2011) 034036)
- Three aims
 - Is it the same object which explains diffraction in pp and ep?
 - Further constraints on the structure of the Pomeron as was determined at HERA
 - Survival probability: difficult to compute theoretically, needs to be measured, inclusive diffraction is optimal place for measurement

Inclusive diffraction at the LHC: sensitivity to gluon density

- Predict DPE dijet cross section at the LHC in AFP acceptance, jets with $p_T > 20$ GeV, reconstructed at particle level using anti-k_T algorithm
- Sensitivity to gluon density in Pomeron especially the gluon density on Pomeron at high β : multiply the gluon density by $(1 \beta)^{\nu}$ with $\nu = -1, ..., 1$
- Measurement possible with 10 pb⁻¹, allows to test if gluon density is similar between HERA and LHC (universality of Pomeron model)
- Dijet mass fraction: dijet mass divided by total diffractive mass $(\sqrt{\xi_1\xi_2S})$

Inclusive diffraction at the LHC: sensitivity to quark densities

- Predict DPE $\gamma+{\rm jet}$ divided by dijet cross section at the LHC
- Sensitivity to universality of Pomeron model
- Sensitivity to quark density in Pomeron, and of assumption: $u = d = s = \overline{u} = \overline{d} = \overline{s}$ used in QCD fits at HERA
- Measurement of W asymmetry also sensitive to quark densities

Looking for BFKL effects

- Dokshitzer Gribov Lipatov Altarelli Parisi (DGLAP): Evolution in Q^2
- Balitski Fadin Kuraev Lipatov (BFKL): Evolution in x

Aim: Understanding the proton structure (quarks, gluons)

Q² : resolution inside the proton (like a microscope)

X :Proton momentum fraction carried away by the interacting quark

Jet gap jet events in diffraction

- Study BFKL dynamics using jet gap jet events in DPE
- See: C. Marquet, C. Royon, M. Trzebinski, R. Zlebcik, Phys. Rev. D 87 (2013) 034010

Exclusive diffraction

- Many exclusive channels can be studied: jets, χ_C , charmonium, J/Ψ
- Possibility to reconstruct the properties of the object produced exclusively (via photon and gluon exchanges) from the tagged proton
- CMS/TOTEM has the possibility to discover/exclude glueballs at low masses: Check the $f_0(1500)$ or $f_0(1710)$ glueball candidates
- Simulation of signal $f_0(1710) \rightarrow \rho^0 \rho^0$ and non resonant $\rho^0 \rho^0$

Search for $\gamma\gamma WW$, $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous coupling

- Study of the process: $pp \rightarrow ppWW$, $pp \rightarrow ppZZ$, $pp \rightarrow pp\gamma\gamma$
- Standard Model: $\sigma_{WW} = 95.6$ fb, $\sigma_{WW}(W = M_X > 1TeV) = 5.9$ fb
- Process sensitive to anomalous couplings: $\gamma\gamma WW$, $\gamma\gamma ZZ$, $\gamma\gamma\gamma\gamma\gamma$; motivated by studying in detail the mechanism of electroweak symmetry breaking, predicted by extradim. models
- Rich γγ physics at LHC: see papers by C. Baldenegro, E. Chapon, S. Fichet, G. von Gersdorff, O. Kepka, B. Lenzi, C. Royon, M. Saimpert: Phys. Rev. D78 (2008) 073005; Phys. Rev. D81 (2010) 074003; Phys.Rev. D89 (2014) 114004 ; JHEP 1502 (2015) 165; Phys. Rev. Lett. 116 (2016) no 23, 231801; Phys. Rev. D93 (2016) no 7, 075031; JHEP 1706 (2017) 142

Anomalous couplings studies in WW events

- Reach on anomalous couplings studied using a full simulation of the ATLAS detector, including all pile-up effects; only leptonic decays of Ws are considered
- Signal appears at high lepton p_T and dilepton mass (central ATLAS) and high diffractive mass (reconstructed using forward detectors)
- Cut on the number of tracks fitted to the primary vertex: very efficient to remove remaining pile-up after requesting a high mass object to be produced (for signal, we have two leptons coming from the W decays and nothing else)

Results from full simulation

• Effective anomalous couplings correspond to loops of charged particles, Reaches the values expected for extradim models (C. Grojean, J. Wells)

Cuts	Тор	Dibosons	Drell-Yan	W/Z+jet	Diffr.	$a_0^W / \Lambda^2 = 5 \cdot 10^{-6} \text{ GeV}^{-2}$
timing < 10 ps						
$p_T^{lep1} > 150 \text{ GeV}$	5198	601	20093	1820	190	282
$p_T^{lep2} > 20 \text{ GeV}$						
M(11)>300 GeV	1650	176	2512	7.7	176	248
nTracks ≤ 3	2.8	2.1	78	0	51	71
$\Delta \phi < 3.1$	2.5	1.7	29	0	2.5	56
$m_X > 800 \text{ GeV}$	0.6	0.4	7.3	0	1.1	50
$p_T^{lep1} > 300 \text{ GeV}$	0	0.2	0	0	0.2	35

Table 9.5. Number of expected signal and background events for $300 \,\text{fb}^{-1}$ at pile-up $\mu = 46$. A time resolution of 10 ps has been assumed for background rejection. The diffractive background comprises production of QED diboson, QED dilepton, diffractive WW, double pomeron exchange WW.

• Improvement of "standard" LHC methods by studying $pp \rightarrow l^{\pm} \nu \gamma \gamma$ (see P. J. Bell, ArXiV:0907.5299) by more than 2 orders of magnitude with 40/300 fb⁻¹ at LHC (CMS mentions that their exclusive analysis will not improve very much at high lumi because of pile-up)

	5σ	95% CL
$\mathcal{L} = 40 \ fb^{-1}, \mu = 23$	$5.5 \ 10^{-6}$	$2.4 \ 10^{-6}$
$\mathcal{L} = 300 \ fb^{-1}, \mu = 46$	$3.2 \ 10^{-6}$	$1.3 \ 10^{-6}$

$\gamma\gamma$ exclusive production: SM contribution

- QCD production dominates at low $m_{\gamma\gamma}$, QED at high $m_{\gamma\gamma}$
- Important to consider W loops at high $m_{\gamma\gamma}$
- At high masses ($\sim 750~{\rm GeV}$), the photon induced processes are dominant
- Conclusion: Two photons and two tagged protons means photon-induced process

Motivations to look for quartic $\gamma\gamma$ anomalous couplings

• Two effective operators at low energies

$$\mathcal{L}_{4\gamma} = \zeta_1^{\gamma} F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2^{\gamma} F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

• $\gamma\gamma\gamma\gamma$ couplings can be modified in a model independent way by loops of heavy charge particles

$$\zeta_1 = \alpha_{em}^2 Q^4 m^{-4} N c_{1,s}$$

where the coupling depends only on Q^4m^{-4} (charge and mass of the charged particle) and on spin, $c_{1,s}$ depends on the spin of the particle This leads to ζ_1 of the order of 10^{-14} - 10^{-13}

• ζ_1 can also be modified by neutral particles at tree level (extensions of the SM including scalar, pseudo-scalar, and spin-2 resonances that couple to the photon) $\zeta_1 = (f_s m)^{-2} d_{1,s}$ where f_s is the $\gamma \gamma X$ coupling of the new particle to the photon, and $d_{1,s}$ depends on the spin of the particle; for instance, 2 TeV dilatons lead to $\zeta_1 \sim 10^{-13}$

★ Warped Extra Dimensions solve hierarchy problem of SM ★ 5th dimension bounded by two branes ★ SM on the visible (or TeV) brane ★ The Kaluza Klein modes of the graviton couple with TeV strength $\mathcal{L}^{\gamma\gamma h} = f^{-2} h_{\mu\nu}^{KK} (\frac{1}{4}\eta_{\mu\nu}F_{\rho\lambda}^2 - F_{\mu\rho}F_{\rho\nu})$ $f \sim \text{TeV}$ $m_{KK} \sim \text{few TeV}$ ★ Effective 4-photon couplings $\zeta_i \sim 10^{-14} - 10^{-13} \text{ GeV}^{-2}$ possible ★ The radion can produce similar effective couplings

- Which models/theories are we sensitive to using AFP/CT-PPS
- Beyond standard models predict anomalous couplings of $\sim 10^{-14}$ - 10^{-13}
- Work in collaboration with Sylvain Fichet, Gero von Gersdorff

One aside: what is pile up at LHC?

- The LHC machine collides packets of protons
- Due to high number of protons in one packet, there can be more than one interaction between two protons when the two packets collide
- Typically up to 50 pile up events

Search for quartic $\gamma\gamma$ anomalous couplings

- Search for $\gamma\gamma\gamma\gamma\gamma$ quartic anomalous couplings
- Couplings predicted by extra-dim, composite Higgs models
- Analysis performed at hadron level including detector efficiencies, resolution effects, pile-up...

Search for quartic $\gamma\gamma$ anomalous couplings

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma$ + pile up
$[0.015 < \xi_{1,2} < 0.15, p_{T1,(2)} > 200, (100) \text{ GeV}]$	130.8	36.9 (373.9)	0.25	0.2	1.6	2968
$m_{\gamma\gamma} > 600 \text{ GeV}$	128.3	34.9(371.6)	0.20	0	0.2	1023
$[p_{\mathrm{T2}}/p_{\mathrm{T1}} > 0.95,$ $ \Delta \phi > \pi - 0.01]$	128.3	34.9(371.4)	0.19	0	0	80.2
$\sqrt{\xi_1\xi_2s} = m_{\gamma\gamma} \pm 3\%$	122.0	32.9(350.2)	0.18	0	0	2.8
$ y_{\gamma\gamma} - y_{pp} < 0.03$	119.1	31.8 (338.5)	0.18	0	0	0

- No background after cuts for 300 fb⁻¹ without needing timing detector information
- Exclusivity cuts using proton tagging needed to suppress backgrounds (Without exclusivity cuts using CT-PPS: background of 80.2 for 300 fb⁻¹)

High lumi: Search for quartic $\gamma\gamma$ anomalous couplings:Results from effective theory

Luminosity	300 fb^{-1}	300 fb^{-1}	300 fb^{-1}	3000 fb^{-1}
pile-up (μ)	50	50	50	200
${f coupling}\ ({f GeV}^{-4})$	\geq 1 conv. γ 5 σ	\geq 1 conv. γ 95% CL	all γ 95% CL	all γ 95% CL
ζ_1 f.f. ζ_1 no f.f.	$ \frac{8 \cdot 10^{-14}}{2.5 \cdot 10^{-14}} $	$5 \cdot 10^{-14} \\ 1.5 \cdot 10^{-14}$	$3 \cdot 10^{-14}$ $9 \cdot 10^{-15}$	$2.5 \cdot 10^{-14} \\ 7 \cdot 10^{-15}$
ζ_2 f.f. ζ_2 no f.f.	$ \begin{array}{r} 2. \cdot 10^{-13} \\ 5 \cdot 10^{-14} \end{array} $	$ \frac{1. \cdot 10^{-13}}{4 \cdot 10^{-14}} $	$ \begin{array}{c} 6 \cdot 10^{-14} \\ 2 \cdot 10^{-14} \end{array} $	$ \frac{4.5 \cdot 10^{-14}}{1.5 \cdot 10^{-14}} $

- Unprecedented sensitivities at hadronic colliders: no limit exists presently on $\gamma\gamma\gamma\gamma$ anomalous couplings
- Reaches the values predicted by extra-dim or composite Higgs models
- Introducing form factors to avoid quadratical divergences of scattering amplitudes due to anomalous couplings in conventional way: $a \rightarrow \frac{a}{1-a}$ with $\Lambda_{autot} < 2$ TeV scale of new physics

 $a \rightarrow \frac{a}{(1+W\gamma\gamma/\Lambda_{cutoff})^2}$ with $\Lambda_{cutoff} \sim 2$ TeV, scale of new physics

- Full amplitude calculation leads to similar results: avoids using a form factor and parameters dependence of the results
- Conclusion: background free experiment

Full amplitude calculation

• 5 σ discovery sensitivity on the effective charge of new charged fermions and vector boson for various mass scenarii for 300 fb^{-1} and $\mu = 50$

Mass~(GeV)	300	600	900	1200	1500
$Q_{\rm eff}$ (vector)	2.2	3.4	4.9	7.2	8.9
$Q_{\rm eff}$ (fermion)	3.6	5.7	8.6	-	-

- Unprecedented sensitivites at hadronic colliders reaching the values predicted by extra-dim models - For reference, we also display the result of effective field theory (without form factor) which deviates at low masses from the full calculation
- For $Q_{Jeff} = QN^{1/4} = 4$, we are sensitive to new vectors (fermions) up to 700 (370) GeV for a luminosity of 300 fb⁻¹

Observation of semi-exclusive dimuon production in CT-PPS

- Observation of exclusive dimuon production in CT-PPS
- First time a near-beam detector operates t a hadron collider at high luminosity (single tag events), < 1 event expected for a mass larger than 350-400 GeV for ~ 15 fb⁻¹) → Request only one proton tagged
- Data-driven background estimate: Use sample of background protons from Z-peak events as example for Drell Yan contribution, Count number of Z-peak events with ξ(μμ) and ξ(proton) correlated within 2σ and use MC to extrapolate from Z-peak region to signal region

Observed signal (CT-PPS)

- First measurement of exclusive di-muon process with proton tag
- CT-PPS works as expected (validates alignment, optics determination...)
- 17 events are found with protons in the CT-PPS acceptance and 12 $<2\sigma$ matching
- Significance for observing 12 events for a background of $1.47 \pm 0.06(stat) \pm 0.52(syst)$: 4.3 σ

Summary of 12 candidate properties

- Dimuon invariant mass vs rapidity distributions in the range expected for single arm acceptance
- No event at higher mass that would be in the acceptance for double tagging
- Highest mass event: 341 GeV
- CMS-PAS-PPS-17-001

$\gamma\gamma\gamma Z$ quartic anomalous coupling

- Look for $Z\gamma$ anomalous production
- Z can decay leptonically or hadronically: the fact that we can control the background using the mass/rapidiy matching technique allows us to look in both channels (very small background)

$\gamma\gamma\gamma Z$ quartic anomalous coupling

$\operatorname{Cut}/\operatorname{Process}$	$egin{array}{c} { m Signal} \ \zeta \ (ilde{\zeta}=0) \end{array}$	$egin{array}{l} { m Signal} \ \zeta = ilde{\zeta} \end{array}$	γZ +pile-up	$W^{\pm}\gamma$ +pile-up	jje^{\pm} +pile-up
$0.015 < \xi_{1,2} < 0.15, \ p_{T\gamma} > 150 \text{ GeV}$ $p_{Tjj} > 100 \text{ GeV}$	38.6	51.4	1951.8	1631	8.47
$m_{\gamma Z} > 700 \text{ GeV}$	37	49.5	349.8	358.9	1.3
$p_{T\gamma}/p_{Tjj} > 0.90,$ $ \Delta \phi - \pi < 0.02$	33.8	45.1	144.7	145.4	0.54
$\sqrt{\xi_1\xi_2s} = m_{\gamma Z} \pm 10\%$	28.2	35.7	19.7	19.3	0.1
$ y_{pp} - y_{\gamma Z} < 0.05$	25.5	32.7	1.5	1.6	0

- Background of about 3.1 events for 300 fb-1, and about 25 events of signal for a coupling of 4 10^{-13} GeV⁻⁴
- C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 1706 (2017) 142

$\gamma\gamma\gamma Z$ quartic anomalous coupling

• Reach on $\gamma\gamma\gamma Z$ anomalous coupling

Coupling (GeV^{-4})	ζ (ζ̃ :	= 0)	$\zeta = \tilde{\zeta}$		
Luminosity	300 f	b^{-1}	$300 {\rm ~fb^{-1}}$		
Pile-up (μ)	50)	50		
Channels	5σ	95% CL	5σ	95% CL	
$\ell \bar \ell \gamma$	$2.8 \cdot 10^{-13}$	$1.8 \cdot 10^{-13}$	$2.5 \cdot 10^{-13}$	$1.5 \cdot 10^{-13}$	
$jj\gamma$	$2.3 \cdot 10^{-13}$	$1.5\cdot10^{-13}$	$2 \cdot 10^{-13}$	$1.3\cdot10^{-13}$	
$jj\gamma \bigoplus \ell \bar{\ell} \gamma$	$1.93 \cdot 10^{-13}$	$1.2\cdot10^{-13}$	$1.7 \cdot 10^{-13}$	$1\cdot 10^{-13}$	

• Best expected rach at the LHC by about two orders of magnitude

 Advantage of this method: sensitivity to anomalous couplings in a model independent way: can be due to wide/narrow resonances, loops of new particles as a threshold effect

Removing pile up: measuring proton time-of-flight

- Measure the proton time-of-flight in order to determine if they originate from the same interaction as our photon
- Typical precision: 10 ps means 2.1 mm

Timing detectors

- Measure the vertex position using proton time-of-flight: suppresses high pile up events at the LHC (50 events in the same bunch crossing), allows to determine if protons originate from main interaction vertex
- Requirements for timing detectors
 - 10 ps final precision (factor 40 rejection on pile up)
 - Efficiency close to 100% over the full detector coverage
 - High rate capability (bunch crossing every 25 ns)
 - Segmentation for multi-proton timing
 - level 1 trigger capability
- Utilisation of quartz, diamond, gas or Silicon detectors (here focus on SAMPIC)

Measuring the proton time-of-flight: the SAMPIC concept

- The general idea is to measure the signal created by the protons inside a quartz, diamond or Silicon detector
- New electronics developed in Saclay/Orsay called SAMPIC that acquires the full waveform shape of the detector signal: about 3 ps precision!
- SAMPIC is cheap (\sim 10 Euros per channel) (compared to a few 1000 Euros for previous technologies)

Timing resolution vs delay

- Measure the RMS of the time difference between two pulses sent to SAMPIC vs delay using a pulse generator
- Flat resolution of \sim 5 ps vs delay: time resolution per channel of \sim 3 ps

Time resolution using Si detectors

- Time resolution using fast Si detectors (3 × 3 mm²): measure the time difference between one channel and a time reference (beam tests at Fermilab with protons at 120 GeV
- Time resolution: (dominated by detector): \sim 40 ps (SAMPIC and amplifier alone give \sim 3 ps)

The future: Application: Timing measurements in Positron Emission Tomography

- The holy grail: 10 picosecond PET (3 mm resolution)
- What seemed to be a dream a few years ago seems now to be closer to reality: Project that could benefit from the synergy between the different disciplines at the University of Kansas (physics, medicine, engineering, computing)
- Other possible application in drone technology: fast decision taking and distance measurement using laser

Conclusion

- Better constraints on gluon distribution in Pomeron, sensitivity to differences in quark distributions
- Jet gap jet events in diffraction: sensitivity to BFKL resummation effects, \sim 15-20% of DPE jets are jet gap jet events!
- $\gamma\gamma\gamma\gamma\gamma$, $\gamma\gamma ZZ$, $\gamma\gamma WW$, $\gamma\gamma\gamma Z$ anomalous coupling studies
 - Exclusive process: photon-induced processes $pp \rightarrow p\gamma\gamma p$ (gluon exchanges suppressed at high masses):
 - Theoretical calculation in better control (QED processes with intact protons), not sensitive to the photon structure function
 - "Background-free" experiment and any observed event is signal
 - NB: Survival probablity in better control than in the QCD (gluon) case
- CT-PPS/AFP allows to probe BSM diphoton production in a model independent way: sensitivities to values predicted by extradim or composite Higgs models
- Search for invisible objects

