Hadronic tau decays and the strong coupling

Diogo Boito, Maarten Golterman, Kim Maltman, Santiago Peris

(also: Oscar Catà, Matthias Jamin, Andy Mahdavi, James Osborne)

Mini Workshop on Tau Physics, Cinvestav, Mexico City May 22-23, 2017

Values for the strong coupling from tau decays (ALEPH data):

- $\begin{array}{lll} \mbox{Pich, Rodríguez-Sánchez (PRD94 ('16) 034027):} & \alpha_s(m_{\tau}^2) = 0.328(12) \\ \mbox{Davier et al. (EPJC74 ('14) 2803):} & \alpha_s(m_{\tau}^2) = 0.332(12) \\ \mbox{Boito et al. (PRD91 ('15) 034003, 95 ('17) 034024):} & \alpha_s(m_{\tau}^2) = 0.301(10) \\ \mbox{(including OPAL data: } \alpha_s(m_{\tau}^2) = 0.309(9) \mbox{)} \end{array}$
- $\begin{array}{lll} & \mbox{PDG (2016):} \\ & \mbox{At the Z mass (from tau): } \alpha_s(m_Z^2) = 0.1192(18) & & \alpha_s(m_\tau^2) = 0.325(15) \\ & \mbox{lattice:} & & \alpha_s(m_Z^2) = 0.1184(11) & & \alpha_s(m_\tau^2) = 0.315(9) \\ & \mbox{world average w/o tau:} & & \alpha_s(m_Z^2) = 0.1179(11) & & \alpha_s(m_\tau^2) = 0.314(9) \end{array}$
- Can we do better? Note disagreements well outside errors!
- *Technical note:* these are averages between CIPT and FOPT values.

Experimental data

ALEPH, Davier et al. (EPJC74 (2014) 2803)

Experimental data

OPAL, Ackerstaff et al. (EPJC7 (1999) 571)

$$R_{\tau}^{ud} = \frac{\Gamma \to \nu_{\tau} \text{hadrons}_{ud}}{\Gamma \to \nu_{\tau} e \overline{\nu}_{e}} = 3S_{\text{EW}} |V_{ud}|^{2} \left[1 + \frac{\alpha_{s}}{\pi} + 5.2 \left(\frac{\alpha_{s}}{\pi}\right)^{2} + \dots \right]$$

- use this to determine $\, lpha_s(m_ au)$ from non-strange decays
- see $\tau \to \nu_{\tau} \rho^* \to \nu_{\tau}$ pions, not $\tau \to \nu_{\tau}$ jets $\rho^* = \rho(770), \ \rho(1450), \ \rho(1700)$ (and others: incl. axial, kaons, ...)
 - → relation with perturbative regime?

(optical theorem)

$$R_{\tau}^{ud}(s_0) = 12\pi S_{EW} |V_{ud}|^2 \int_0^{s_0} \frac{ds}{s_0} \left(1 - \frac{s}{s_0}\right)^2 \left(1 + \frac{2s}{s_0}\right) \operatorname{Im} \Pi(s)$$
$$= \pi \rho(s)$$
$$s = (q_W)^2$$

 $0 \leq s \leq s_0 = m_\tau^2 \,$ depending on how much momentum ν_τ carries away

V+A non-strange spectral function (Davier et al., 2014, ALEPH)

Blow up of large *s* region:

Duality violations – resonance effects – are **not** small!

Two approaches to non-perturbative "contamination"

- ALEPH (Davier *et al.*), OPAL, Pich & Rodriguez ("Truncated-OPE approach"): Ignore Duality Violations, but suppress dangerous region by "pinching": choose only higher-order polynomials with multiple zeroes at $s = s_0 = m_{\tau}^2$ Fit $\alpha_s(m_{\tau}^2)$ and C_4 , C_6 , C_8 , set higher orders and DVs to zero Problem: inconsistent treatment of the OPE
- Boito et al. ("DV-model approach"):

Treat OPE consistently, keep only low orders: choose simple polynomials Model DVs with ansatz $\rho_{\rm DV}(s) = e^{-\gamma s - \delta} \sin(\alpha + \beta s)$ Vary s_0 between $s_{min} \approx 1.55 \text{ GeV}^2$ and m_{τ}^2 Fit $\alpha_s(m_{\tau}^2)$ and C_6 , C_8 , α , β , γ , δ Problem: need to model DVs Truncated-OPE approach: take $s_0 = m_{\tau}^2$ and weights ($x \equiv z/s_0$)

$$w_{00}(x) = (1-x)^{2}(1+2x)$$

$$w_{10}(x) = (1-x)^{3}(1+2x)$$

$$w_{11}(x) = (1-x)^{3}(1+2x)x$$
 (ALEPH)

$$w_{12}(x) = (1-x)^{3}(1+2x)x^{2}$$

$$w_{13}(x) = (1-x)^{3}(1+2x)x^{3}$$

Assume: $C_{10} = C_{12} = C_{14} = C_{16} = 0$ and Duality Violations negligible \Rightarrow fit four parameters (α_s , C_4 , C_6 , C_8) to five data spectral integrals

However:
$$\frac{1}{2\pi i} \oint dz \, z^n \, \frac{C_{2k}}{z^k} = C_{2(n+1)} \delta_{k,n+1}$$

• need OPE coefficients up to C_{16}

resonance oscillations around OPE clearly visible in V+A spectral function!

This approach can be tested: fake data

• Start from model with, by construction, lower $\alpha_s(m_{\tau}^2) = 0.312$ (CIPT) and non-negligible DVs, compatible with the experimental spectral function. Test Truncated-OPE approach

- Generate fake data from this model (using real-data covariances).
- Perform Truncated-OPE type fits on these fake data.
- Compare the parameter values ($lpha_s(m_{ au}^2)$) obtained from these fits to the input value, $lpha_s(m_{ au}^2)=0.312$.

Results of this test:

ALEPH	$\alpha_s(m_{ au}^2)$	$C_{4,V+A} (\text{GeV}^4)$	$C_{6,V+A} (\mathrm{GeV}^6)$	$C_{8,V+A} (\mathrm{GeV}^8)$	χ^2/dof
true values	0.312	0.0027	-0.013	0.035	
fake data fit	0.334(3)	-0.0024(4)	0.0007(3)	-0.0008(4)	0.95/1

optimal	$\alpha_s(m_{\tau}^2)$	$C_{6,V+A} (\mathrm{GeV}^6)$	$C_{8,V+A} (\mathrm{GeV}^8)$	$C_{10,V+A} \; (\text{GeV}^{10})$	χ^2/dof
true values	0.312	-0.013	0.035	-0.083	
fake data fit	0.334(4)	0.0008(4)	-0.0008(5)	0.0001(3)	0.92/1

(CIPT, statistical errors only)

- Truncated-OPE approach gets it wrong (similar conclusion for FOPT), despite good χ^2 : systematic overestimation of α_s
- big difference in behavior of OPE

DV-model approach (Boito *et al.*):

• Use simple weights:

 $w_0(x) = 1$, $w_2(x) = 1 - x^2$, $w_3(x) = (1 - x)^2(1 + 2x)$

hence C_6 , C_8 only OPE coefficients needed

• No attempt to suppress DVs, hence use ansatz $\rho_{\rm DV}(s) = e^{-\gamma s - \delta} \sin(\alpha + \beta s)$

for the DV part of the spectral function, and fit $\, lpha \, , \, eta \, , \, \gamma \, , \, \delta \,$

• To do this, vary $s_{min} \leq s_0 \leq m_{ au}^2$, make use of the data!

Fit determines $s_{min} \approx 1.55 \text{ GeV}^2$

Example: simplest fit, vector channel $w_0(x) = 1$

Blue: FOPT $\alpha_s(m_{\tau}^2) = 0.296(11)$ Red: CIPT $\alpha_s(m_{\tau}^2) = 0.310(14)$

Black: OPE contribution only

Example: 3-weight $w_{0,2,3}(x)$, vector channel fit

Blue: FOPT $\alpha_s(m_{\tau}^2) = 0.296(10)$ Red: CIPT $\alpha_s(m_{\tau}^2) = 0.310(14)$

Black: OPE contribution only Vector as good as Vector+Axial!

This approach passes many tests (here V+A):

Check s_0 dependence, should work above $\sim 1.5 \text{ GeV}^2$ ALEPH moments for Boito *et al.* (only w₀₀ used in fits; $s_0 = m_{\tau}^2$ minus s_0 diffs.):

Same tests for truncated-OPE approach (again, V+A):

Check s_0 dependence, should work above $\sim 2 \text{ GeV}^2$ ALEPH moments for P&R (all used in fit):

Model dependence of DV-model approach:

- Depends on a model for the effect of Duality Violations = resonance effects
- Ingredients: Regge behavior of spectrum for $s \ge s_{min}$:

$$\begin{split} M^2(n) &= M^2(0) + \sigma n , \quad n = 0, 1, 2, \dots , \quad \sigma \sim \Lambda_{\rm QCD}^2 \sim 1 \ {\rm GeV}^2 \\ \text{Large } N_c : \ \Gamma(n) \propto M(n)/N_c \end{split}$$

- Model satisfying these constraints and analyticity (Blok, Shifman & Zhang '98, Bigi, Shifman, Uraltsev & Vainshtein '99 Catà, Golterman & Peris '05,'08)
- More general arguments: in preparation (Boito *et al.*)
- Important to test this with data!

FOPT and CIPT

- FOPT = fixed order perturbation theory
- CIPT = contour improved perturbation theory (Pivovarov '92, Le Diberder & Pich '92)
- Different ways of partially resumming perturbation theory on the theory side of the sum rules.
- Differences: 0.017 (5.1%) (Davier *et al.*)
 0.016 (4.9%) (Pich & Rodriguez)
 0.014 (4.7%) (Boito *et al.*)
- Renormalon analysis somewhat favors FOPT (Beneke & Jamin '08, Beneke, Boito & Jamin '12)

Outlook

- Recent theory advances may help extract $\alpha_s(m_{\tau}^2)$ from non-perturbative hadronic τ -decay data to higher precision, but need to understand the physics of resonances better
 - ⇒ precision tests of the DV *ansatz*? Important!
- Belle and Belle-II will have thousands times more τ pairs than ALEPH/OPAL!
- Focus on vector channel less clear that $s \le m_{\tau}^2$ is already asymptotic in axial channel; reduce errors especially for $s > 2.5 \text{ GeV}^2$ Will improving the $\tau \to \nu_{\tau} 4\pi$ non-strange vector decay already help? (Large errors in the region $s > 1.5 \text{ GeV}^2$ dominated by this decay)
- Open theory question: CIPT vs. FOPT? (cf. Boito, Beneke & Jamin, '12) Comparison with value from other high-precision value, at common scale?

BACKUP SLIDES

Why does the Truncated-OPE approach get it wrong?

- Rely on uncontrolled assumption about the OPE in higher orders.
- Assume that duality violations (resonance effects) can be neglected, at least in V+A, without testing this.

Why does the Truncated-OPE approach get it wrong?

- Rely on uncontrolled assumption about the OPE in higher orders.
- Assume that duality violations (resonance effects) can be neglected, at least in V+A, without testing this.

