Overview of Tau Physics

Swagato Banerjee

Mini-Workshop on Tau Physics May 22-23, 2017 Mexico City, Mex.

40th anniversary of the "tau" nomenclature

The Discovery of the τ, 1975-1977: A Tale of Three Papers

© G. J. Feldman 1993

Department of Physics Harvard University Cambridge, MA 02138

1. Evidence for Anomalous Lepton Production in e⁺ - e⁻ Annihilation; Physical Review Letters, Vol. 35, Issue 22, 1489-1492; 1975

2. "Properties of Anomalous e-mu Events Produced in e+e-Annihilation"; Physics Letters, Vol. 63B, Issue 4, 466; August 16, 1976

3. "Properties of the Proposed tau Charged Lepton"; Physics Letters, Vol.70B, Issue 4, 487; October 24, 1977

first mention of "tau" in a published journal

Swagato

Banerjee

UofL

A Proper Name

As we approached the writing of the third paper, I realized that this was the last chance for the τ to get a proper name. You will remember that it was still being called the U particle at this time. I reminded Martin that U stood for unknown and that it was meant to be a temporary name. Now that we had identified it as a heavy lepton, the name should be changed to one that reflected that identity. And we had to do it now, because if we published one more paper with the name U, it would stick forever.

Overview of τ physics

Contents of this talk:

- Physics with τ decays
 - Mass, lifetime
 - Lepton universality
 - $|V_{us}|$ from τ decays
 - Lepton Flavor violation in τ decays
- Physics with τ produced
 - from B decays
 - from Top decays
 - from Higgs decays

Apologies for not covering α_s , g-2, SUSY, exotica, Lepton Flavor violation at the LHC, CP Violation : this list is not exhaustive!

Overview of τ physics

Contents of this talk:

- Physics with τ decays
 - Mass, lifetime
 - Lepton universality
 - $|V_{us}|$ from τ decays
 - Lepton Flavor violation in τ decays
- Physics with τ produced
 - from B decays
 - from Top decays
 - from Higgs decays

Apologies for not covering α_s , g-2, SUSY, exotica, Lepton Flavor violation at the LHC, CP Violation : this list is not exhaustive!

Overview of τ physics

Swagato

Banerjee

UofL

Part

Introduction to τ decays

	Experiment	Number of τ pairs	
		2:405	
	LEP	~3x10°	
	CLEO	~1x10 ⁷	
	BaBar	~5x10 ⁸	
	Belle	~9x10 ⁸	Including QED
	Belle II	~10 ¹²	OCD correction
$\frac{\text{arve prediction.}}{v_{\tau}}$, 20% 2 e	0% 60% JUUUU	17.4 µvv evv
d'>	$v_e v_e$ $v = V_{ud} d$	$D_{\mu} \frac{d' d' d'}{> + V_{us} s>}$	Cabibbo allowed

Overview of τ physics

N

τ mass and lifetime

- most precise measurements by e^+e^- colliders at $\tau^+\tau^-$ threshold
 - few events but very significant

ew

/sics

• Belle

6

- 3-prong vs. 3-prong decay length
- largest syst. error: alignment

Lepton universality from leptonic τ decays

Standard Model for leptons λ , $\rho = e, \mu, \tau$ (Marciano 1988)

$$\begin{aligned} \Gamma[\lambda \to \nu_{\lambda} \rho \overline{\nu}_{\rho}(\gamma)] &= \Gamma_{\lambda \rho} &= \Gamma_{\lambda} \mathcal{B}_{\lambda \rho} &= \frac{\mathcal{B}_{\lambda \rho}}{\tau_{\lambda}} &= \frac{\mathcal{G}_{\lambda} \mathcal{G}_{\rho} m_{\lambda}^{5}}{192\pi^{3}} f\left(\frac{m_{\rho}^{2}}{m_{\lambda}^{2}}\right) r_{W}^{\lambda} r_{\gamma}^{\lambda} ,\\ \mathcal{G}_{\lambda} &= \frac{g_{\lambda}^{2}}{4\sqrt{2}M_{W}^{2}} \quad f(x) = 1 - 8x + 8x^{3} - x^{4} - 12x^{2}\ln x \quad f_{\lambda \rho} = f\left(\frac{m_{\rho}^{2}}{m_{\lambda}^{2}}\right) \end{aligned}$$

where

$$r_W^{\lambda} = 1 + \frac{3}{5} \frac{m_{\lambda}^2}{M_W^2} \quad r_{\gamma}^{\lambda} = 1 + \frac{\alpha(m_{\lambda})}{2\pi} \left(\frac{25}{4} - \pi^2\right)$$

Tests of lepton universality from ratios of above partial widths:

$$\begin{pmatrix} \frac{g_{\tau}}{g_{\mu}} \end{pmatrix} = \sqrt{\frac{\mathcal{B}_{\tau e}}{\mathcal{B}_{\mu e}} \frac{\tau_{\mu} m_{\mu}^{5} f_{\mu e} r_{W}^{\mu} r_{\gamma}^{\mu}}{\tau_{\tau} m_{\tau}^{5} f_{\tau e} r_{W}^{\tau} r_{\gamma}^{\tau}}} = 1.0010 \pm 0.0015 = \sqrt{\frac{\mathcal{B}_{\tau e}}{\mathcal{B}_{\tau e}^{SM}}}$$

$$\begin{pmatrix} \frac{g_{\tau}}{g_{e}} \end{pmatrix} = \sqrt{\frac{\mathcal{B}_{\tau \mu}}{\mathcal{B}_{\mu e}} \frac{\tau_{\mu} m_{\mu}^{5} f_{\mu e} r_{W}^{\mu} r_{\gamma}^{\mu}}{\tau_{\tau} m_{\tau}^{5} f_{\tau \mu} r_{W}^{\tau} r_{\gamma}^{\tau}}} = 1.0029 \pm 0.0015 = \sqrt{\frac{\mathcal{B}_{\tau \mu}}{\mathcal{B}_{\tau \mu}^{SM}}}$$

$$\begin{pmatrix} \frac{g_{\mu}}{g_{e}} \end{pmatrix} = \sqrt{\frac{\mathcal{B}_{\tau \mu}}{\mathcal{B}_{\tau e}} \frac{f_{\tau e}}{f_{\tau \mu}}} = 1.0019 \pm 0.0014$$

precision: 0.20 - 0.23% pre-*B*-Factories $\Rightarrow 0.14 - 0.15\%$ today thanks essentially to the Belle tau lifetime measurement, PRL 112 (2014) 031801

Lepton universality tests limited by precision of $B_{e/\mu}$, not any more by τ_{τ}

Overview of τ physics

Lepton universality from hadronic τ decays

Standard Model:

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{\mathcal{B}(\tau \to h\nu_{\tau})}{\mathcal{B}(h \to \mu\bar{\nu}_{\mu})} \frac{2m_{h}m_{\mu}^{2}\tau_{h}}{(1+\delta_{h})m_{\tau}^{3}\tau_{\tau}} \left(\frac{1-m_{\mu}^{2}/m_{h}^{2}}{1-m_{h}^{2}/m_{\tau}^{2}}\right)^{2} \quad (h = \pi \text{ or } K)$$

rad. corr. $\delta_{\pi} = (0.16 \pm 0.12)\%$, $\delta_{\kappa} = (0.90 \pm 0.22)\%$ (Decker 1994) $\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\pi} = 0.9961 \pm 0.0027$, $\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\kappa} = 0.9860 \pm 0.0070$.

(electron tests less precise because hadron two body decays to electrons are helicity-suppressed)

Averaging the three g_{τ}/g_{μ} ratios:

 $\left(\frac{g_{\tau}}{g_{\mu}}\right)_{\tau+\pi+\kappa} = 1.0000 \pm 0.0014 , \quad (\text{accounting for statistical correlations})$

[recent useful contribution from BABAR $\frac{K^-\nu_{\tau}}{e^-\bar{\nu}_e\nu_{\tau}}$ measurement, PRL 105 (2010) 051602]

Overview of τ physics

Lepton universality improved Beuniv

Universality improved ${\cal B}(au o e u ar u)$

- (M. Davier, 2005): assume SM lepton universality to improve $\mathcal{B}_e = \mathcal{B}(\tau \to e \bar{\nu}_e \nu_{\tau})$ fit \mathcal{B}_e using three determinations:
 - $\mathcal{B}_e = \mathcal{B}_e$
 - $\blacktriangleright \mathcal{B}_e = \mathcal{B}_\mu \cdot f(m_e^2/m_\tau^2)/f(m_\mu^2/m_\tau^2)$
 - $\mathcal{B}_{e} = \mathcal{B}(\mu \to e\bar{\nu}_{e}\nu_{\mu}) \cdot (\tau_{\tau}/\tau_{\mu}) \cdot (m_{\tau}/m_{\mu})^{5} \cdot f(m_{e}^{2}/m_{\tau}^{2})/f(m_{e}^{2}/m_{\mu}^{2}) \cdot (\delta_{\gamma}^{\tau}\delta_{W}^{\tau})/(\delta_{\gamma}^{\mu}\delta_{W}^{\mu})$ [above we have: $\mathcal{B}(\mu \to e\bar{\nu}_{e}\nu_{\mu}) = 1$]
- $\mathcal{B}_{e}^{\text{univ}} = (17.815 \pm 0.023)\%$ HFAG-PDG 2016 prelim. fit

 \Rightarrow improvement by almost a factor of 2 from the value of $B_e = (17.816 \pm 0.041)\%$

Ov	erv	1ew
of τ	phy	vsics

Swagato

Banerjee

The |V_{us}| element of CKM Matrix

V_{ij}: Mixing between Weak and Mass Eigenstates

$$\mathbf{V} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} \mathbf{1} & \mathbf{\lambda} & \mathbf{\lambda}^3 \\ \mathbf{\lambda} & \mathbf{1} & \mathbf{\lambda}^2 \\ \mathbf{\lambda}^3 & \mathbf{\lambda}^2 & \mathbf{1} \end{pmatrix}$$
$$\left| \begin{vmatrix} V_{ud} \end{vmatrix}^2 + \begin{vmatrix} V_{us} \end{vmatrix}^2 + \begin{vmatrix} V_{ub} \end{vmatrix}^2 = \mathbf{1} \right|$$

• $|V_{ud}| = 0.97417 \pm 0.00021$ (from nuclear β decays) J.C.Hardy & I.S. Towner, PRC 91 (2015) 025501

• $|V_{ub}| = (4.09 \pm 0.39) \times 10^{-3} (\text{from B} \rightarrow X_u \ \ell \ \nu \text{ decays})$ Particle Data Group 2016

 $\Rightarrow |V_{us}|^{CKM} = 0.22582 \pm 0.00091$

Precision measurement of IV_{us}**I is a test of CKM unitarity**

Overview of τ physics

CKM Unitarity

V-A interaction via W-exchange with quarks have V_{ij}

 $\Delta_{\rm CKM} \sim (v/\Lambda)^2$ sensitive to new physics in large class of models

CKM Unitarity violation:	$ V_{ud} ^2 +$	$ V_{us} ^2 + V_{ub} ^2 =$	$1 + \Delta_{\rm CKM}$
---------------------------------	----------------	-----------------------------	------------------------

Overview		Swagato	Uof	
of τ physics		Banerjee	UUJL	

Approaches to |V_{us}|

Hyperon decays:

 $\Rightarrow |V_{us}|f_1(0)$

т decays:

 $\Rightarrow m_s, |V_{us}|$

Overview of τ physics

12

Hadronic width of the Tlenton

(Inclusive) Hadronic tau decay.

Extraction of α_s and V_{us} . The idea is simple:

€

er 2013

€

$$CD: R_{\tau} = \frac{\Gamma(\tau \rightarrow v_{\tau} + hadrons)}{\Gamma(\tau \rightarrow v_{\tau} e^{-} v_{e})} \approx N_{C}$$

$$R_{\tau} = R_{\tau}^{S = \begin{pmatrix} V_{us} \\ V_{us} \end{pmatrix}^{2}} R_{\tau}^{S \neq 0 \tau} R_{\tau}^{S}} N_{C} |V_{ud}|^{2} N_{C} |V_{us}|^{2} \approx 2.85 + 0.15$$

Hadronic width of the τ lepton

QCD corrections :
$$R_{\tau} = |V_{ud}|^2 N_c + |V_{us}|^2 N_c + O(\alpha_s)$$

Spectral Moments: $R_{\tau}^{kl} = \int_0^1 dz (1-z)^k z^l \frac{dR_{\tau}}{dz}, z = \frac{q^2}{m_{\tau}^2}$
Zeroth order moments are simply the τ branching fractions
Finite every for g for g (Ne) for g (Ring per Sig (P) for m_s :
 $\delta R_{\tau}^{kl} = \frac{R_{\tau,non-strange}^{kl}}{|V_{ud}|^2} - \frac{R_{\tau,strange}^{kl}}{|V_{us}|^2} \ge \delta R_{\tau,th}^{00} = 0.1544 (37) + 9.3 (3.4) m_s^2$
 $+ 0.0034 (28) = 0.242 (32)$
 $m_s = 95.00 \pm 5.00 \, \text{MeV}$ [PDG2015]

E.Gamiz, M.Jamin, A.Pich, J.Prades & F. Schwab, arXiv 0709.0282 [hep-ph]

Truncation errors studied with QCD lattice inputs in terms of weights:

$$|V_{us}| = \sqrt{\frac{R_{V+A;us}^{w}(s_0)}{|V_{ud}|^2} - \delta R_{V+A}^{w,OPE}(s_0)}} - \delta R_{V+A}^{w,OPE}(s_0)$$

K.Maltman, R.J.Hudspith, R.Lewis, C.E.Wolfe, J.Zanotti, arXiv 1511.08514 [hep-ph]

Overview of τ physics

Originally published in 2005, Revised calculations in 2014

M.Davier, A.Hoeker, B.Malaescu, C.Z.Yuan & Z.Zhang, EPCJ 74 (2014) 2803

Overview of τ physics

OPAL Collaboration, EPCJ 7 (1999) xxxx

Overview of τ physics

6

Strange spectral functions

Strange spectral functions from ALEPH & OPAL are not so precise

Overview of τ physics

Swagato

Banerjee

Strange spectral functions

Some [preliminary] measurements from B-Factories are available

τ branching fractions are well measured

- Most of the branching fractions are highly correlated.
- •Sources of correlation between the same experiment:
 - Track reconstruction ~ 1% for 1-vs-1 topology
 - \bullet Secondary vertex reconstruction $\sim 1.5\%$ for K_S
 - Calorimeter bump reconstruction ~ 1-3% for π^0
 - Particle identification $\sim 2-4 \%$
 - Luminosity uncertainty $\sim 1\%$

Sources of correlation between different experiments:
Tau-pair cross-section uncertainty ~ 0.36%
Uncertainty on Branching Fractions of backgrounds

Simultaneous averaging of all branching fractions

Heavy Flavor Averaging Group (HFLAV)

• Global fit to 170 measurements of τ Branching Fractions:

- •39 from ALEPH
- ■35 from CLEO
- •23 from BaBar
- I9 from OPAL
- 15 from Belle
- 14 from DELPHI
- •11 from L3
- ●6 from CLEO3
- 3 from TPC
- 2 from ARGUS
- ■2 from HRS
- I from CELLO

HFLAV tries to take into account correlations between measurements, as well as dependence on common external parameters such as taupair cross-section and background normalization errors between experiments.

As much as possible, HFLAV tries to avoid inflating measured uncertainties using old PDG-style scale factors to account for spread between the different measurements. Instead, a confidence level (CL) for the average is quoted.

Swagato

Banerjee

UofL

HFLAV style fits in PDG

From 2016, HFLAV-style fits have been adopted by PDG. Chin.Phys. C40 (2016) no.10, 100001.

According to PDG naming convention, 47 basis nodes are fitted to 170 measurement with constraint that linear sum of basis nodes add up to unity $\Rightarrow 170 - 47 + 1 = 124$ degrees of freedom

In HFLAV notation, 135 quantities consisting of 47 basis nodes and 88 linear combinations or ratios of linear combinations are expressed as constraints. Both the methods are equivalent.

Quality of fit:

Unity-constrained fit: χ^2 / dof = 137.4/124, CL = 19.3% Non-Unity-constrained fit: χ^2 / dof = 137.3/123, CL = 17.8% Residual from unity in un-constrained fit = (0.035 ± 0.103)%

Overview of τ physics

Swagato

Banerjee

|Vus| from inclusive strange decays

[Preliminary]

Branching fraction	HFAG Summer 2016 fit (%)
$K^- u_ au$	0.6960 ± 0.0096
${\cal K}^-\pi^{\sf 0} u_ au$	0.4327 ± 0.0149
$K^- 2\pi^0 u_ au$ (ex. K^0)	0.0640 ± 0.0220
$K^- 3 \pi^0 u_ au$ (ex. K^0 , η)	0.0428 ± 0.0216
$\pi^-\overline{K}^{0} u_ au$	0.8386 ± 0.0141
$\pi^-\overline{K}^{0}\pi^{0} u_ au$	0.3812 ± 0.0129
$\pi^-\overline{K}^0\pi^0\pi^0 u_ au$ (ex. K^0)	0.0234 ± 0.0231
$\overline{K}^0 h^- h^- h^+ u_ au$	0.0222 ± 0.0202
$K^-\eta u_ au$	0.0155 ± 0.0008
$K^-\pi^0\eta u_ au$	0.0048 ± 0.0012
$\pi^-\overline{K}^{0}\eta u_ au$	0.0094 ± 0.0015
$K^-\omega u_ au$	0.0410 ± 0.0092
$K^- \phi u_{ au} \; (\phi ightarrow K^+ K^-)$	0.0022 ± 0.0008
${\cal K}^- \phi u_ au$ $(\phi o {\cal K}^0_{\cal S} {\cal K}^0_{\cal L})$	0.0015 ± 0.0006
${\cal K}^-\pi^-\pi^+ u_ au$ (ex. ${\cal K}^{\sf 0}$, ω)	0.2923 ± 0.0067
$K^{-}\pi^{-}\pi^{+}\pi^{0} u_{ au}$ (ex. K^{0} , ω , η)	0.0410 ± 0.0143
$K^{-}2\pi^{-}2\pi^{+} u_{ au}$ (ex. K^{0})	0.0001 ± 0.0001
$K^{-}2\pi^{-}2\pi^{+}\pi^{0}\nu_{\tau}$ (ex. K^{0})	0.0001 ± 0.0001
$X_s^- \nu_{ au}$	2.9087 ± 0.0482

$$|V_{us}|_{\tau s} = \sqrt{R_s} / \left[\frac{R_{VA}}{|V_{ud}|^2} - \delta R_{\text{theory}}\right]$$

 $B_s = (2.909 \pm 0.048)\%$

 $B_{\text{hadrons}} = B_{\text{all}} - B_e - B_\mu = (64.76 \pm 0.10)\%$

 $B_{\rm VA} = B_{\rm hadrons} - B_s = (61.85 \pm 0.10)\%$

To get R, we normalize by

 $B_e = (17.816 \pm 0.041)\%$

However, the error on B_e can be improved using lepton universality and improved measurements of mass (m_{τ}) and lifetime (τ_{τ}).

UofL

Lepton universality improved |Vus|

$R_{ m had} = \Gamma(au ightarrow m hadrons) / \Gamma_{ m univ}(au ightarrow e u ar{ u})$

•
$$R_{\text{had}} = \frac{\Gamma(\tau \rightarrow \text{hadrons})}{\Gamma_{\text{univ}}(\tau \rightarrow e\nu\bar{\nu})} = \frac{\mathcal{B}_{\text{hadrons}}}{\mathcal{B}_{e}^{\text{univ}}} = \frac{1 - \mathcal{B}_{e}^{\text{univ}} - f(m_{\mu}^{2}/m_{\tau}^{2})/f(m_{e}^{2}/m_{\tau}^{2}) \cdot \mathcal{B}_{e}^{\text{univ}}}{\mathcal{B}_{e}^{\text{univ}}}$$

- two different determinations, second one not "contaminated" by hadronic BFs
- $R_{had} = 3.6349 \pm 0.0082$ HFAG-PDG 2016 prelim. fit
- R_{had} (leptonic BFs only) = 3.6397 \pm 0.0070 HFAG-PDG 2016 prelim. fit

 \Rightarrow |Vus| = (0.2186 ± 0.0021) [Preliminary]

The measured $|V_{us}|$ values & errors are numerically almost identical using • measured $B_{had} = B_{non-strange} + B_s$ from unity non-constrained τ BR fit, OR • $B_{had} = 1 - (1 + f_{\mu}/f_e) B_e^{univ}$ from unity constrained τ BR fit This is because error on R_{had} feeds to error on $R_{non-strange}$ in calculation of $|V_{us}|$ • In both cases, R_{had} is normalized using B_e^{univ}

 $\begin{array}{l} \text{Dominant contribution to error on } |V_{us}| \text{ comes from error on the measured } R_{strange.} \\ \delta R_{theory} \text{ contributes to } 47\% \text{ of the relative error on } |V_{us}|. \end{array}$

$|V_{us}|$ from exclusive τ decays

$$\frac{B(\tau \to K^- \nu_{\tau})}{B(\tau \to \pi^- \nu_{\tau})} = \frac{f_K^2 |V_{us}|^2}{f_\pi^2 |V_{ud}|^2} \frac{\left(1 - m_K^2 / m_{\tau}^2\right)^2}{\left(1 - m_\pi^2 / m_{\tau}^2\right)^2} R_{\tau K / \tau \pi}$$

- Independent of convergence of OPE, as electroweak corrections cancel
- Radiative corrections $S_{EW}{=}1.02010\pm0.00030~[Erler~2004]$
- Long Distance effects (R_{τK/τπ}) known [Decker & Finkmeier 1995, Marciano 2004]
- •All non-perturbative QCD effects encapsulated as ratio of meson decay constants:
- $f_K/f_\pi = 1.193 \pm 0.003$, $f_K = 155.6 \pm 0.4$ MeV [FLAG 2016 Lattice Averages]

Summary of |V_{us}| results

- $\cdot |V_{us}|$ has been measured using inclusive and exclusive tau decays.
- Preliminary results from Maltman's estimate agrees with unitarity.

Overview of τ physics

Search for lepton flavor violation in τ decays

- Lepton flavor violation (LFV)
 - not forbidden by SM gauge symmetry
 - most new models naturally include LFV vertex
- In SM, LF is conserved for zero degenerate ν masses
- Now we have clear indication that ν 's have finite mass \Rightarrow Lepton Flavor is violated in Nature: but by how much?
- SM extended to include finite ν mass and mixing predicts LFV

$$\begin{split} & \mathcal{B}(\tau^{\pm} \to \mu^{\pm} \gamma) \text{[Lee-Shrock, Phys. Rev. D 16, 1444 (1977)]} \\ &= \frac{3\alpha}{128\pi} \left(\frac{\Delta m_{23}^2}{M_W^2}\right)^2 \sin^2 2\theta_{\text{mix}} \mathcal{B}(\tau \to \mu \bar{\nu}_{\mu} \nu_{\tau}) \\ & \text{With } \Delta \sim 10^{-3} \, \text{eV}^2, \, M_W \sim \mathcal{O}(10^{11}) \, \text{eV} \\ &\approx \mathcal{O}(10^{-54}) \, (\theta_{\text{mix}} : \text{max}) \end{split}$$

... many orders below experimental sensitivity!

Observation for $LFV \Rightarrow ($ unambiguous signature of new physics)

Search for lepton flavor violation in τ decays

Some models predict LFV upto existing experimental bounds

	${\cal B}(au o \ell \gamma)$	$\mathcal{B}(au o \ell \ell \ell)$
SM+v-mixing (PRL95(2005)41802,EPJC8(1999)513)	10^{-54}	10^{-14}
SUSY Higgs (PLB549(2002)159, PLB566(2003)217)	10^{-10}	10^{-7}
SM+Heavy Majorana $\nu_{ m R}$ (PRD66(2002)034008)	10^{-9}	10^{-10}
Non-Universal Z' (PLB547(2002)252)	10^{-9}	10^{-8}
SUSY SO(10) (NPB649(2003)189, PRD68(2003)033012)	10^{-8}	10^{-10}
mSUGRA+seesaw (EPJC14(2000)319, PRD66(2002)115013)	10^{-7}	10^{-9}

MSSM+seesaw (PRD66 (2002) 057301) $\mathcal{B}(\tau \rightarrow \mu\gamma)$: $\mathcal{B}(\tau \rightarrow \mu\mu\mu)$: $\mathcal{B}(\tau \rightarrow \mu\eta) = 1.5$: 1: 8.4

Status of lepton flavor violating limits

90% CL upper limits on τ LFV decays

Overview of τ physics

28

Swagato

Banerjee

Combined upper limits

90% CL upper limits on τ LFV decays

Overview of τ physics

29

Swagato

Banerjee

Evolution of LFV limits

of τ physics

Overview

30

Banerjee

Overview of τ physics

Contents of this talk:

- Physics with τ decays
 - Mass, lifetime
 - Lepton universality
 - $|V_{us}|$ from τ decays
 - Lepton Flavor violation in τ decays
- Physics with τ produced
 - from B decays
 - from Top decays
 - from Higgs decays

Apologies for not covering α_s , g-2, SUSY, exotica, Lepton Flavor violation at the LHC, CP Violation : this list is not exhaustive!

Overview of τ physics

3

VV $\bar{ u}_{\ell}$ \bar{u}

of τ physics

32

Banerjee

$B \longrightarrow D^{(*)} \, \tau \, \nu$

• Ratio $R(D^{(*)}) = B(B \rightarrow D^{(*)}\tau\nu) / B(B \rightarrow D^{(*)}\mu\nu)$ is sensitive to charged Higgs, leptoquark

• S.L. decays involving a τ^{\pm} have an additional helicity amplitude (for D* τv)

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 \left| V_{cb} \right|^2 \left| \mathbf{p}_{D^{(*)}}^* \right| q^2}{96\pi^3 m_B^2} \left(1 - \frac{m_\tau^2}{q^2} \right)^2 \left[\left(|H_+|^2 + |H_-|^2 + |H_0|^2 \right) \left(1 + \frac{m_\tau^2}{2q^2} \right) + \frac{3m_\tau^2}{2q^2} H_s \right]^2 \right]$$

For D_Tv, only H₀₀ and H_s contribute!

• A charged Higgs (2HDM type II) of spin 0 coupling to the τ will only affect Hs

 $H_{s}^{2\text{HDM}} = H_{s}^{\text{SM}} \times \left(1 - \frac{\tan^{2}\beta}{m_{H^{\pm}}^{2}} \frac{q^{2}}{1 \mp m_{c}/m_{b}}\right) - \text{for } D\tau\nu + \text{for } D^{*}\tau\nu + \text{for } D^{*}\tau\nu$

This could enhance or decrease the BF, depending on $tan\beta/m_H$

Strategy in e⁺e⁻ colliders

UofL

 $D^{\cup}\tau\nu$

Signal

Strategy in e⁺e⁻ colliders

Overview of τ physics

35

Banerjee

Strategy in hadron colliders

Overview of τ physics

Current status

of τ physics

UofL

Banerjee

Prospects of using $\tau \rightarrow a_1 \nu_{\tau}$ at LHCb

 $0.270 \pm 0.035 \pm 0.027$

 $0.310 \pm 0.015 \pm 0.008$

Average

Normalization mode:

Primary

Vertex

Future prospects at Belle II

Tau lepton from Top decays

In the SM, BR of the t-quark into leptons are same. But, in new physics models, the BR to τ -leptons could be different, eg. via contributions from the charged Higgs (t \rightarrow H⁺b), or decays containing supersymmetric stop quarks (t \rightarrow t̃ + X).

 $t^{l^+, q}$ v, \overline{q}' b

At the LHC, pair production of t, decaying via t→ b v_τ τ channel followed by τ→ τ + gravitino could change BR to τ-leptons. Predicted cross-section for pair production of t-quark is similar (or 12%) as that of pair production of t-quark for m_t = 120 (or 180) GeV. ICHEP2016 limits on m_t from LHC are > 800 GeV.

Tau lepton from Top decays

Results presented here were recorded at center-of-mass energy of $\sqrt{s} = 7$ TeV, the full 2011 data sample corresponding to an integrated luminosity of $\int L = 4.6$ fb⁻¹. <u>Reference: ATLAS Collaboration, Phys. Rev. D 92, 072005 (2015)</u>

	Measured	SM	LEP
	(top quark)		(W)
$\sigma_{t\overline{t}}$	$178 \pm 3 \text{ (stat.)} \pm 16 \text{ (syst.)} \pm 3 \text{ (lumi.) pb}$	$177.3 \pm 9.0^{+4.6}_{-6.0} \text{ pb}$	
B_j	$66.5 \pm 0.4 \text{ (stat.)} \pm 1.3 \text{ (syst.)}$	$67.51 {\pm} 0.07$	67.48 ± 0.28
B_e	$13.3 \pm 0.4 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$	12.72 ± 0.01	12.70 ± 0.20
B_{μ}	$13.4 \pm 0.3 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$	12.72 ± 0.01	12.60 ± 0.18
$B_{ au}$	$7.0 \pm 0.3 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$	$7.05 {\pm} 0.01$	$7.20 {\pm} 0.13$

This analysis is the first measurement of top quark hadronic and semi-leptonic branching ratios. The precision ranges from 2.3% for t → jets to 7.6% for t → τ_h + X. The measured B_τ will vary by more than observed uncertainty if B(t̃ → b v_τ τ̃) times production cross-section of t̄-quark is > 3% of pair production of t-quark.

Origin of mass

Direct observation of $H \rightarrow \tau^+ \tau^$ confirms the Higgs-like nature of the newly discovered particle.

$$\begin{aligned} \mathcal{I} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{B} \gamma + h.c. \end{aligned}$$

Bosons •

Overview of τ physics

$H \rightarrow \tau^+ \tau^-$: event topology

• Vector Boson Fusion (VBF) process ($\sigma = 1.6$ pb) with 2 well-separated jets • Boosted Higgs recoiling against jets from gluon fusion process ($\sigma = 19.4$ pb)

of τ physics

$H \rightarrow \tau^+ \tau^-$: status in Run1

JHEP 04 (2015) 117

JHEP 05 (2014) 104

At 125 GeV	ATLAS	CMS
Observed Significance	4.5 σ	3.2 σ
Expected Signifiance	3.4 σ	3.7 σ
Signal Strength	1.40 +0.43 -0.37	0.78 ± 0.27
•		

Overview of τ physics

44

Highlights from Run1 at LHC

of τ physics

45

Banerjee

 $EPJC 75 (2015) 476^{(-\alpha,-1.5)U(0,\alpha)}$

The 08% CL interval presented in this work is a factor 10 better

Swagato

Banerjee

UofL

 \rightarrow H \rightarrow tt has been updated with full 2016 luminosity.

 $\mu = 1.06 + 0.25 - 0.24$

Expected: 4.7 σ , Observed: 4.9 σ Combined CMS will be > 5 σ

Overview of τ physics

Charged Higgs decay modes

A. Djouadi, L. Maiani, A. Polosa, J. Quevillon, V. Riquer (arXiv:1502.05653)

$H^{\pm} \rightarrow \tau \nu$: status in Run2

Lots of interesting physics with tau's

