LFV searches involving tau leptons at LHC

Swagato Banerjee

Mini-Workshop on Tau Physics May 22-23, 2017 Mexico City, Mex.

What does the LHC tell us about LFV?

LFV searches

at LHC

Swagato Banerjee

Why are tau's so interesting at LHC?

- best channel for observing Higgs boson fermionic decays
- also the best for finding the neutral MSSM Higgs boson
- add another channel to all searches with leptons
- they are really heavy, so they might be special (recent hints of possible lepton non-universality from LHCb...)
- they are handy for Lepton Flavor Violation searches

Swagato

Banerjee

Tau decays at LHC

Tau (τ) decays leptonically (35%) as well as hadronically (65%)

UofL

Banerjee

Hadronic decays reconstructed as "tau-jet" in ATLAS/CMS

Tau-jet identif.90% of the energy is contained

QCD jets have large multiplicity, wide energy profile, uniform shower shape in a 'cone' of radius R=0.2

Tau jets have 1 or 3 charged tracks, narrow activity, annular ring of isolation

LFV searches at LHC Swagato Banerjee

Tau-jet performance in ATLAS/CMS

at LHC

6

Banerjee

Tau-jet modelling in ATLAS/CMS

Obs. / exp.

Tau-jet substructure in ATLAS/CMS

ATLAS: EPJC(2016)76:295; CMS: JINST11(2016)P01019, CMS-DP-2016-015

Reconstructed decay mode

LFV searches at LHC

8

Challenges in analyses with tau-jets

<u>Signal:</u> reconstruction of genuine hadronic taus (τ_h)

+ efficient trigger selection

rejection of pileup (LHC currently features up to ~40 collisions / bunch crossing)
 reliable description of data using simulation

LFV	searches
at	LHC

Swagato

Banerjee

LFV searches at LHC

Searches covered in this talk:

- $H \rightarrow \mu \tau$, $e \tau$, μe (ATLAS, CMS)
- $Z \rightarrow \mu \tau$, $e \tau$, μe (ATLAS, CMS)
- Heavy $X \rightarrow \mu \tau$, $e \tau$, μe (ATLAS, CMS)
- $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ (ATLAS, LHCb)
- $\tau \rightarrow \overline{p} \mu^+ \mu^-, p \mu^- \mu^- (LHCb)$

Other non-tau LFV searches from LHCb not covered in this talk:

- $D^0 \rightarrow e^+ \mu^-$ (Phys. Lett. B754 (2016) 167)
- $B^{0}(s) \rightarrow e^{+} \mu^{-}$ (Phys. Rev. Lett. 111 (2013) 141801)
- $D^+_{(s)} \rightarrow \pi^+ \mu^- \mu^-, \pi^- \mu^+ \mu^+$ (Phys. Lett. B 724 (2013) 203)
- $B^- \rightarrow D^{(*)+} \mu^- \mu^-$ (Phys. Rev. D 85 (2012) 112004)
- $B^+ \rightarrow \pi^-(K^-) \mu^+ \mu^+$ (Phys. Rev. Lett. 108 (2012) 101601)

LHC Run 1 : Still room for BSM decays

JHEP 08 (2016) 045

Swagato

Banerjee

UofL

- Possibilities to highlight BSM physics in the scalar sector:
 - Indirect evidence through observation of deviations in the couplings of the H boson (but precision limited and increasing slowly with additional data)
 - Direct evidence through observation of exotic decays of the Higgs boson

 Large room still viable for exotic Higgs boson decays (~20%)

LFV searches

at LHC

LFV decays of the SM Higgs boson

Flavor Violating Higgs Decays Roni Harnik, Joachim Kopp, Jure Zupan

arXiv:1209.1397

Bailtí

Introduction

- LFV couplings to the Higgs possible, e.g. if SM only valid to finite scale Λ
- LFV Higgs couplings would allow processes like $\mu \rightarrow e, \tau \rightarrow \mu$ and $\tau \rightarrow e$ via a virtual Higgs boson

- $\mathcal{B}(H \to e\mu) < \mathcal{O}(10^{-8}) @ 95\%$ CL from $\mu \to e\gamma$
- $\mathcal{B}(H \to e\tau/\mu\tau) < \mathcal{O}(10\%)$ @ 95% CL from $\tau \to e\gamma/\mu\gamma$ and e/μ g-2 measurements

nstitut B

• $\mathcal{B}(H \to e\tau/\mu\tau) < 13\%$ @ 95% CL from theoretical reinterpretation of $H \to \tau\tau$ search results from ATLAS

direct search very promising

LFV searches at LHC

3

Event topology

Event topology

Search Strategy

ATLAS (8 TeV): $H \rightarrow e/\mu \tau_{had}$

Regions defined in terms of the transverse mass

$$m_{\mathrm{T}}^{\ell, E_{\mathrm{T}}^{\mathrm{miss}}} \equiv \sqrt{2 p_{\mathrm{T}}^{\ell} E_{\mathrm{T}}^{\mathrm{miss}} (1 - \cos \Delta \phi)}$$

with $\Delta\phi$ angle between ℓ and the direction of $\textit{E}_{\rm T}^{\rm miss}$

ATLAS (8 TeV): $H \rightarrow e/\mu \tau_{had}$

Higgs decays (8 TeVATLAS H_{μ} , μ/te

Data driven asymmetry method : SM backgrounds are e/µ symmetric

Signal region: no jets

Signal region: with jets

Swagato

Banerjee

UofL

8 TeV

Aliggs decays TeV): $H \rightarrow e/\mu \tau$

ATLAS 1604.07730

6

8

95% CL upper limit on Br($H \rightarrow \mu \tau$), %

10

12

14

Channel	Category	Expected limit [%] Observed limit [%] Best fit Br [
	SR1	$2.81^{+1.06}_{-0.79}$	3.0	$0.33^{+1.48}_{-1.59}$		
$H \rightarrow e \tau_{\rm had}$	SR2	$2.95^{+1.16}_{-0.82}$	2.24	$-1.33^{+1.56}_{-1.80}$		
	Combined	$2.07\substack{+0.82 \\ -0.58}$	1.81	$-0.47^{+1.08}_{-1.18}$		
	SR _{noJets}	$1.66^{+0.72}_{-0.46}$	1.45	$-0.45^{+0.89}_{-0.97}$		
$H \rightarrow e \tau_{\rm lep}$	SRwithJets	$3.33^{+1.60}_{-0.93}$	3.99	$0.74^{+1.59}_{-1.62}$		
	Combined	$1.48\substack{+0.60\\-0.42}$	1.36	$-0.26\substack{+0.79\\-0.82}$		
$H \rightarrow e \tau$	Combined	$1.21^{+0.49}_{-0.34}$	1.04	$-0.34^{+0.64}_{-0.66}$		
	SR1	$1.60^{+0.64}_{-0.45}$	1.55	$-0.07^{+0.81}_{-0.86}$		
$H ightarrow \mu au_{ m had}$	SR2	$1.75^{+0.71}_{-0.49}$	3.51	$1.94^{+0.92}_{-0.89}$		
	Combined	$1.24^{+0.50}_{-0.35}$	1.85	$0.77^{+0.62}_{-0.62}$		
	SR _{noJets}	$2.03^{+0.93}_{-0.57}$	2.38	$0.31^{+1.06}_{-0.99}$		
$H \rightarrow \mu \tau_{\rm lep}$	SRwithJets	$3.57^{+1.74}_{-1.00}$	2.85	$-1.03^{+1.66}_{-1.82}$		
	Combined	$1.73^{+0.74}_{-0.49}$	1.79	$0.03\substack{+0.88 \\ -0.86}$		
$H \to \mu \tau$	Combined	$1.01^{+0.40}_{-0.29}$	1.43	0.53 ^{+0.51} _{-0.51}		
Compa	Compatible with 0 at the level of 1σ					

LFV searches at LHC

0

2

Swagato Banerjee

CMS (8 TeV): $H \rightarrow \mu \tau$

Sample	$H \rightarrow \mu \tau_h$			$H \rightarrow \mu \tau_e$		
Jampie	0-Jet	1-Jet	2-Jets	0-Jet	1-Jet	2-Jets
SM H background	7.1 ± 1.3	5.3 ± 0.8	1.6 ± 0.5	1.9 ± 0.3	1.6 ± 0.2	0.6 ± 0.1
sum of backgrounds	2125 ± 530	513 ± 114	5.4 ± 1.4	160 ± 19	118 ± 9	5.6 ± 0.9
LFV Higgs boson signal	66 ± 18	30 ± 8	2.9 ± 1.1	23 ± 6	13 ± 3	1.2 ± 0.3
data	2147	511	10	180	128	6

CMS, arXiv:1502.07400

CMS (8 TeV): $H \rightarrow e \tau$

Results: $H \rightarrow e\tau$

 $\mathcal{B}(H \to e\tau) < 0.69\%$ @ 95% CL

Swagato

Bargrige

UofL

LFV searches at LHC

22

CMS (8 TeV): $H \rightarrow e \mu$

CMS, **arXiv**:1607.03561

 $\mathcal{B}(H \to e\mu) < 0.035\% @ 95\% CL$

Swagato

Bareles

lof

LFV searches at LHC

23

$CM \mathcal{E}_{M} \mathcal{F}_{T} \mathcal{E}_{T} \mathcal{F}_{T} \mathcal{E}_{T} \mathcal{E}_{T$

PAS HIG 16 005

- $H \rightarrow \mu \tau$ @ 13 TeV
- Very similar analysis
- Uses 2.3 fb⁻¹ of data from 2015
- Excess from 8 TeV data not confirmed but also not excluded!

 $\mathcal{B}(H \to \mu \tau) < 1.20\%$ @ 95% CL

Best-fit branching fractions						
	0-jet 1-jet 2-jets Combined					
	(%)	(%)	(%)	(%)		
$\mu \tau_h$	$0.12\substack{+2.02 \\ -1.91}$	$1.70^{+2.41}_{-2.52}$	$1.54^{+3.12}_{-2.71}$	$1.12^{+1.45}_{-1.40}$		
$\mu \tau_{\rm e}$	$-2.11\substack{+1.30 \\ -1.89}$	$-2.18\substack{+1.99\\-2.05}$	$2.04\substack{+2.96 \\ -3.31}$	$-1.81\substack{+1.07 \\ -1.32}$		
μτ	$-0.76^{+0.81}_{-0.84}\%$					

CMS-PAS-HIG-16-005

Swagato

Bancrice

UofL

LHC results as of last week

Datasets studied:

	Experiment		Process	√s [TeV]	∫L [fb-1]	
	CMS	1502.07400	H→τμ	8	20	
	CMS	1607.03561	Н→еµ Н→еτ	8	20	
	CMS	PAS HIG 16 005	Н→τμ	13	2.3	
	ATLAS	1508.03372	H→τμ	8	20	
H/Z	decaysas	Executiv	$V \overset{H}{\operatorname{e}} \overset{{\operatorname{sum}}}{\operatorname{H} \to \tau e}$	mar ₈ y -	April 2	2017
		Best Up	per Lin	nits:		
	Process	(CMS	AT	LAS	
	H→τμ	BR	<1.20%	BR<	<1.40%	
	H→τe	BR	<0.69%	BR<	<1.04%	
	Н→еµ	BR<	<0.048%		-	
LFV searches at LHC	7	2	.5			Swagato Banerjee

CMS (13 TeV, 2016 dataset): $H \rightarrow \mu \tau$

- Events divided into 4 categories to target different productions modes:
 - 0 jet: Targets gg → H events

LFV searches

at LHC

- 1 jet: Targets $gg \rightarrow H$ events produced in association with a jet
- 2 jets, low m_{ii} : Targets gg \rightarrow H events with additional jets
- 2 jets, high m_{ii} : Targets $qq \rightarrow H$ events
- BDT trained on the signal against a selection of background samples (reducible background for $e\tau_h$ and $\mu\tau_h$, ttbar and/or $Z \rightarrow \tau\tau$ for $e\tau_\mu$ and $\mu\tau_e$)

CMS-PAS-HIG-17-001

26

Swagato

Banerjee

CMS (13 TeV, 2016 dataset): $H \rightarrow e/\mu \tau$

- No excess of data
- Best fit branching fraction: 0.00 ± 0.12%
- B(H→µτ) < 0.25% at 95% CL</p>

- Slight excess of data (1.6 σ)
- Best-fit branching fraction: 0.30 ± 0.18%
- B(H→eτ) < 0.61% at 95% CL

CMS-PAS-HIG-17-001

Updated status (LHCP 2017)

LFV searches at LHC

28

Swagato Banerjee

LFV decays of the Z boson

arXiv:hep-ph/0010193

Swagato

Banerjee

UofL

Introduction

• Neutrino oscillation predicts LFV in Z decays, but $\mathcal{B}(Z \rightarrow e\mu) < 10^{-60}$

- Good probe for new physics
- Current constraints:
 - Indirect from $\mu \rightarrow 3e$: $\mathcal{B}(Z \rightarrow e\mu) < 5 \cdot 10^{-13}$

LFV	searches
at	LHC

LFV decays of the Z boson (CMS)

30

CMS-PAS-EXO-13-005

- Count events in window around Z mass: (91 ± 3) GeV
- Background prediction of 83 ± 9
- Events found in data: 87

LFV searches

at LHC

• Use CLs method to determine limit:

$$\mathcal{B}(Z \to e \mu)_{expected} < (6.7^{+2.8}_{-2.0}) \cdot 10^{-7}$$

$$\mathcal{B}(Z \to e \mu)_{observed} < 7.3 \cdot 10^{-7}$$

III. Physikalisches

Institut B

Bane

8 TeV decays of the Z boson (ATLAS)

Event selection

- High p_T e and μ
- Little jet activity
- Little MET

Background estimation

- Side-band fit
 - Possible due to the good mass resolution and the narrow mass range
- Third order polynomial Shape studied in MC

Mass estimator

• Invariant mass (no MET)

ATLAS 1408.5774

Swagato

Banerjee

UofL

 $\mathcal{B}(Z \to e \mu) < 7.5 \times 10^{-7}$

8 Tev FV decays of the Z boson (ATLAS)

One search channels

• $Z \rightarrow \mu \tau_{had}$

Methodology

- Similar to the one employed in the corresponding Higgs search
- Cut values are lowered to match the kinematics of Z decays
 ⇒ Larger background contribution from W+jets
 ⇒ Estimated in more bins

$Br(Z \to \mu \tau) (10^{-5})$	SR1	SR2	Combined
Expected limit	$2.6^{+1.1}_{-0.7}$	$6.4^{-1.8}_{+2.8}$	$2.6^{+1.1}_{-0.7}$
Observed limit	1.5	7.9	1.7
Best fit	$-2.1^{+1.2}_{-1.3}$	$2.6^{+2.9}_{-2.6}$	$-1.6^{+1.3}_{-1.4}$

LFV searches at LHC

ATLAS 1604.07737

LFV decays of a heavy Z' boson

Extended SSM Z'

- \checkmark the same couplings as the SM Z boson
- \checkmark extend to allow for LFV couplings:

 $Q_{12}, Q_{13} \text{ and } Q_{23}$

$$\sigma(Z' \to I_i I_j) \propto \frac{g_Z^2 Q_{ij}^2 M_{II'}^2}{(M_{II'}^2 - M_{Z'}^2)^2 + M_{Z'}^2 \Gamma_{Z'}^2}$$

- \checkmark A general search for heavy resonance
- ✓ Relatively small background due to 2 different flavor leptons
- Z' boson LFV decay search

LFV searches

at LHC

- ✓ to eµ final states with 7 TeV data (EPJC Vol.71, 12(2011)1809)
- ✓ to $e\mu/e\tau_{had}/\mu\tau_{had}$ final states with 8 TeV (<u>Phys. Rev. Lett. 115 031801 (2015)</u>) and 13 TeV data (accepted by EPJC, arXiv:1607.08079v1)

 $l = e, \mu \text{ or } \tau_{had}$ Signal: Pythia8

Swagato

Banerjee

ISFeV de Heavyrésonances y Z'boson (CMS: 8 TeV)

Motivations

• τ sneutrino in RPV SUSY

 $W_{\text{RPV}} = \frac{1}{2}\lambda_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k \ (i, j, k \in 1, 2, 3)$

- Z' and γ '
- Quantum black holes (non resonant)
 - Within a specific model

Background estimation

- Irreducible MC based
- Reducible combination

Signal model	Lower limit signal mass (TeV)		
	Observed	Expected	
RPV $\tilde{\nu}_{\tau}$ ($\lambda_{132} = \lambda_{231} = \lambda'_{311} = 0.01$)	1.28	1.24	
RPV $\tilde{\nu}_{\tau}$ ($\lambda_{132} = \lambda_{231} = 0.05$, $\lambda'_{311} = 0.10$)	2.16	2.16	
RPV $\tilde{\nu}_{\tau}$ ($\lambda_{132} = \lambda_{231} = 0.07$, $\lambda'_{311} = 0.11$)	2.30	2.30	
LFV Z' ($\kappa = 0.05$)	1.29	1.25	
QBH $n = 0$	1.99	1.99	
QBH $n = 1$ (RS)	2.36	2.36	
QBH $n = 1$ (PDG)	2.81	2.81	
QBH $n = 2$	3.15	3.15	
QBH $n = 3$	3.34	3.34	
QBH $n = 4$	3.46	3.46	
QBH $n = 5$	3.55	3.55	
QBH $n = 6$	3.63	3.63	

LFV searches at LHC

CMS 1604.05239

LFV decays of a heavy Z' boson (ATLAS: 13 TeV)

➢ Electrons

- Kinematic: pT> 65 GeV $|\eta| < 2.47$ (no crack region)
- Track and calo quality

Dilepton invariant mass

• Isolated

> Muons

- Kinematic: pT> 65 GeV |η|< 2.5
- Combined track quality
- Isolated

MET: calculated with calibrated objects

> Taus

- Kinematic: pT> 40 GeV |ŋ|< 2.47
- 1 and 3 prongs
- Track and calo quality
- Overlap removal with e and μ
- Events Data Events Data Event Data ATLAS 10⁵ ATLAS ATLAS Multi-Jet & W+jets 10 Top Quarks Multi-Jet & W+jets 10⁵ √s = 13 TeV, 3.2 fb⁻¹ Top Quarks √s = 13 TeV, 3.2 fb⁻¹ √s = 13 TeV, 3.2 fb⁻¹ Diboson Top Quarks Drell-Yan Multi-Jet & W+jets 10⁴ Drell-Yan 10 eµ channel 10 et channel Diboson μτ channel Drell-Yan Diboson 7' 1.5 TeV 7' 2 TeV 10³ 1.5 TeV RPV v. 1.5 TeV 10 10³ RPV v. 2 TeV OBH RS 1.5 TeV QBH RS 2 TeV OBH BS 1.5 TeV 10² 10² 10 10 10 10 10 10 10 10-10 Data/SM Bkg Data/SM Bkg Data/SM Bkg 0.5 0.5 300 400 2000 1000 200 300 400 1000 2000 200 200 300 400 1000 2000 m_{uτ} [GeV] m_{eu} [GeV] m_{eτ} [GeV] **Dominant:** Top + jet fake **Dominant:** Top + jet fake **Dominant: Top backgrounds** LFV searches Swagato 35 Banerjee at LHC

 $M_{II'}$ <600GeV: validation region; $M_{II'}$ >600GeV: signal region

LFV decays of a heavy Z' boson (ATLAS: 13 TeV)

Also interpreted as searches for SUSY RPV or Quantum Black Hole

Model	Expected Limit [TeV]			Observed Limit [TeV]		
Woder	еμ	$e\tau$	$\mu\tau$	еµ	$e\tau$	$\mu\tau$
RPV SUSY $\tilde{\nu}_{\tau}$	2.5	2.1	2.0	2.3	2.2	1.9
QBH ADD $n = 6$	4.6	4.1	3.9	4.5	4.1	3.9
QBH RS $n = 1$	2.5	2.2	2.1	2.4	2.2	2.1

LFV searches at LHC

С

arXiv:1607.08079

$\tau \rightarrow \mu \mu^{+} \mu^{-} (LHCb)$

arXiv:1409.8548 JHEP 02 (2015) 121

Swagato

Banerjee

UofL

 $\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 4.6 \times 10^{-8}$ @ 90% C.L.

8 TeV

TO there $\mu^{-} \mu^{+} \mu^{-} (ATLAS)$

Selection

ATLAS 1601.03567

Swagato

Banerjee

UofL

- 1 Cut-based *loose* selection
- **2** Train Boosted Decision Tree and apply loose cut x_0 on BDT output x
- 3 Cut-based *tight* selection
- Apply tight cut x_1 on BDT output, optimising for the expected \mathcal{B} limit

Fit Strategy

- ▶ Blinded analysis: ignore signal region: $m_{3\mu} \in [1713, 1841] \text{ MeV}/c^2$
- **1** Estimate background yield from mass sidebands using "tight $+ x > x_0$ "
- **2** Fit BDT output in region $x > x_0$
- **3** Extrapolate background yield for "tight $+ x > x_1$ "

• ATLAS limit on the $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ branching ratio

 $\mathcal{B}(au^- o \mu^- \mu^+ \mu^-) < 3.76 imes 10^{-7}$ @ 90% C.L.

Solid black line: observed, dashed black line: expected

Swagato

Banerjee

UofL

LFV searches at LHC

39

Lots of interesting physics with LFV at LHC

LFV searches at LHC

Swagato

Banerjee