Lepton Flavour Violating Tau decays

Emilie Passemar
Indiana University/Jefferson Laboratory
Mini Workshop on Tau physics CINVESTAV, Mexico, May 23, 2017

In collaboration with A. Celis (LMU, Munich), and V. Cirigliano (LANL) PRD 89 (2014) 013008, 095014

Outline

1. Introduction and Motivation
2. Charged Lepton-Flavour Violation from tau decays
3. Special Role of $\tau \rightarrow \mu \pi \pi$: hadronic form factors
4. Results
5. Conclusion and Outlook
6. Introduction and Motivation

1.1 Why study charged leptons?

- In the quest of New Physics, can be sensitive to very high scale:
$-\underset{\left[\varepsilon_{K}\right]}{\text { Kaon physics: }} \frac{s \bar{d} s \bar{d}}{\Lambda^{2}} \Rightarrow \Lambda \gtrsim 10^{5} \mathrm{TeV}$
- Charged Leptons: $\left.\frac{\mu \bar{e} f \bar{f}}{\Lambda^{2}} \Rightarrow \Lambda \rightarrow \mathrm{e} \gamma\right] \mathrm{L} \gtrsim 10^{4} \mathrm{TeV}$
- At low energy: lots of experiments e.g., MEG, COMET, Mu2e, E-969, BaBar, Bellel-II, BESIII, $\mathrm{LHCb} \square$ huge improvements on measurements and bounds obtained and more expected
- In many cases no SM background: e.g., LFV, EDMs
- For some modes accurate calculations of hadronic uncertainties essential
\square Charged leptons very important to look for New Physics!

1.2 The Program

2. Charged Lepton-Flavour Violation

2.1 Introduction and Motivation

- Lepton Flavour Number is an « accidental » symmetry of the $\mathrm{SM}\left(\mathrm{m}_{\mathrm{v}}=0\right)$
- In the $S M$ with massive neutrinos effective CLFV vertices are tiny due to GIM suppression \Rightarrow unobservably small rates!
E.g.: $\mu \rightarrow \boldsymbol{e} \boldsymbol{\gamma}$
$\operatorname{Br}(\mu \rightarrow e \gamma)=\frac{3 \alpha}{32 \pi}\left|\sum_{i=2,3} U_{\mu i}^{*} U_{e i} \frac{\Delta m_{1 i}^{2}}{M_{W}^{2}}\right|^{2}<10^{-54}$
Petcov'77, Marciano \& Sanda'77, Lee \& Shrock'77...

$$
\left[\operatorname{Br}(\tau \rightarrow \mu \gamma)<10^{-40}\right]
$$

- Extremely clean probe of beyond SM physics

2.1 Introduction and Motivation

- In New Physics scenarios CLFV can reach observable levels in several channels

Talk by D.Hitlin@ CLFV2013		$\tau \rightarrow \mu \gamma \tau \rightarrow \ell \ell \ell$	
$S M+v$ mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	Unde	
SUSY Higgs	Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517	10^{-10}	10^{-7}
$S M+$ heavy Maj v_{R}	Cvetic, Dib, Kim, Kim , PRD66 (2002) 034008	10^{-9}	10-10
Non-universal Z^{\prime}	Yue, Zhang, Liu, PLB 547 (2002) 252	10^{-9}	10^{-8}
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012	10^{-8}	10-10
mSUGRA + Seesaw	Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319 Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013	10^{-7}	10^{-9}

- But the sensitivity of particular modes to CLFV couplings is model dependent
- Comparison in muonic and tauonic channels of branching ratios, conversion rates and spectra is model-diagnostic

2.2 CLFV processes: muon decays

- Several processes: $\mu \rightarrow \boldsymbol{e} \gamma, \mu \rightarrow \boldsymbol{e} \overline{\boldsymbol{e}}, \mu(A, Z) \rightarrow \boldsymbol{e}(A, Z)$

MEG'13

2.2 CLFV processes: tau decays

- Several processes: $\tau \rightarrow \ell \gamma, \tau \rightarrow \ell_{\alpha} \bar{\ell}_{\beta} \ell_{\beta}, \tau \rightarrow \ell \boldsymbol{Y}_{k}$

$$
\nwarrow_{P}, S, V, P \bar{P}, . .
$$

HFAG-Tau
Summer 2014

- CLEO
- BaBar
- Belle
- LHCb
- 48 LFV modes studied at Belle and BaBar

2.2 CLFV processes: tau decays

- Several processes: $\tau \rightarrow \ell \gamma, \tau \rightarrow \ell_{\alpha} \bar{\ell}_{\beta} \ell_{\beta}, \tau \rightarrow \ell Y_{\kappa}$ 90% CL upper limits on τ LFV decays $\boldsymbol{P}, \boldsymbol{S}, \boldsymbol{V}, \boldsymbol{P} \overline{\boldsymbol{P}}, \ldots$

- Expected sensitivity 10^{-9} or better at LHCb , Belle II?

2.3 Effective Field Theory approach

$$
\mathcal{L}=\mathcal{L}_{S M}+\frac{C^{(5)}}{\Lambda} O^{(5)}+\sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)}+\ldots
$$

- Build all D>5 LFV operators:

See e.g.
Black, Han, He, Sher'02
Brignole \& Rossi'04
Dassinger et al.'07
Matsuzaki \& Sanda'08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov \& Zhuridov'14
Cirigliano, Celis, E.P.'14
> Dipole:

$$
\mathcal{L}_{\text {eff }}^{D} \supset-\frac{C_{D}}{\Lambda^{2}} \boldsymbol{m}_{\tau} \bar{\mu} \sigma^{\mu \nu} \boldsymbol{P}_{L, R} \tau F_{\mu \nu}
$$

e.g.

2.3 Effective Field Theory approach

- Build all D>5 LFV operators:
$>$ Dipole: $\mathcal{L}_{e f f}^{D} \supset-\frac{C_{D}}{\Lambda^{2}} \boldsymbol{m}_{\tau} \bar{\mu} \sigma^{\mu \nu} P_{L, R} \tau F_{\mu \nu}$

See e.g.
Black, Han, He, Sher'02
Brignole \& Rossi'04
Dassinger et al.'07
Matsuzaki \& Sanda’08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov \& Zhuridov'14
Cirigliano, Celis, E.P.' 14
> Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$
\mathcal{L}_{e f f}^{S, V} \supset-\frac{C_{S, V}}{\Lambda^{2}} \boldsymbol{m}_{\tau} \boldsymbol{m}_{q} \boldsymbol{G}_{F} \bar{\mu} \Gamma \boldsymbol{P}_{L, R} \tau \bar{q} \Gamma q
$$

e.g.

2.3 Effective Field Theory approach

- Build all D>5 LFV operators:
$>$ Dipole: $\mathcal{L}_{\text {eff }}^{D} \supset-\frac{C_{D}}{\Lambda^{2}} \boldsymbol{m}_{\tau} \bar{\mu} \sigma^{\mu \nu} P_{L, R} \tau F_{\mu \nu}$

See e.g.
Black, Han, He, Sher'02
Brignole \& Rossi'04
Dassinger et al.'07
Matsuzaki \& Sanda’08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov \& Zhuridov'14
Cirigliano, Celis, E.P.' 14
$>$ Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector): $\mathcal{L}_{\text {fff }}^{s} \supset-\frac{C_{S, V}}{\Lambda^{2}} \boldsymbol{m}_{\tau} \boldsymbol{m}_{q} \boldsymbol{G}_{F} \bar{\mu} \Gamma P_{L, R} \tau \bar{q} \Gamma q$
> Integrating out heavy quarks generates gluonic operator

2.3 Effective Field Theory approach

- Build all D>5 LFV operators:
$>$ Dipole: $\mathcal{L}_{e f f}^{D} \supset-\frac{C_{D}}{\Lambda^{2}} \boldsymbol{m}_{\tau} \bar{\mu} \sigma^{\mu \nu} P_{L, R} \tau F_{\mu \nu}$

See e.g.
Black, Han, He, Sher'02
Brignole \& Rossi'04
Dassinger et al.'07
Matsuzaki \& Sanda’08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov \& Zhuridov'14
Cirigliano, Celis, E.P.' 14
$>$ Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector): $\mathcal{L}_{f f f}^{s} \supset-\frac{C_{S, V}}{\Lambda^{2}} \boldsymbol{m}_{\tau} \boldsymbol{m}_{q} \boldsymbol{G}_{F} \bar{\mu} \Gamma P_{L, R} \tau \bar{q} \Gamma q$
>4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector): $\mathcal{L}_{\epsilon f f}^{4 \ell} \supset-\frac{C_{S, V}^{4 \ell}}{\Lambda^{2}} \bar{\mu} \Gamma P_{L, R} \tau \bar{\mu} \Gamma P_{L, R} \mu$

$\Gamma \equiv 1, \gamma^{\mu}$

2.3 Effective Field Theory approach

- Build all D>5 LFV operators:
$>$ Dipole: $\mathcal{L}_{\text {eff }}^{D} \supset-\frac{C_{D}}{\Lambda^{2}} \boldsymbol{m}_{\tau} \bar{\mu} \sigma^{\mu \nu} P_{L, R} \tau F_{\mu \nu}$

See e.g.
Black, Han, He, Sher'02
Brignole \& Rossi'04
Dassinger et al.'07
Matsuzaki \& Sanda’08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov \& Zhuridov'14
Cirigliano, Celis, E.P.' 14
$>$ Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector): $\mathcal{L}_{\text {eff }}^{S} \supset-\frac{C_{S, V}}{\Lambda^{2}} \boldsymbol{m}_{\tau} \boldsymbol{m}_{q} \boldsymbol{G}_{F} \bar{\mu} \Gamma P_{L, R} \tau \bar{q} \Gamma q$
$>$ Lepton-gluon (Scalar, Pseudo-scalar): $\mathcal{L}_{e f f}^{G} \supset-\frac{C_{G}}{\Lambda^{2}} \boldsymbol{m}_{\tau} \boldsymbol{G}_{\boldsymbol{F}} \bar{\mu} P_{L, R} \tau G_{\mu \nu}^{a} G_{a}^{\mu \nu}$
>4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector): $\mathcal{L}_{\epsilon f f}^{4 \ell} \supset-\frac{C_{S, V}^{4 \ell}}{\Lambda^{2}} \bar{\mu} \Gamma P_{L, R} \tau \bar{\mu} \Gamma P_{L, R} \mu$

- Each UV model generates a specific pattern of them
$\Gamma \equiv 1, \gamma^{\mu}$

2.4 Model discriminating power of Tau processes

- Summary table:

	$\tau \rightarrow 3 \mu$	$\tau \rightarrow \mu \gamma$	$\tau \rightarrow \mu \pi^{+} \pi^{-}$	$\tau \rightarrow \mu K \bar{K}$	$\tau \rightarrow \mu \pi$	$\tau \rightarrow \mu \eta^{(\prime)}$
$\mathrm{O}_{\mathrm{S}, \mathrm{V}}^{4 \ell}$	\checkmark	-	-	-	-	-
O_{D}	\checkmark	\checkmark	\checkmark	\checkmark	-	-
$\mathrm{O}_{\mathrm{V}}^{\mathrm{q}}$	-	-	$\checkmark(\mathrm{I}=1)$	$\checkmark(\mathrm{I}=0,1)$	-	-
$\mathrm{O}_{\mathrm{S}}^{\mathrm{q}}$	-	-	$\checkmark(\mathrm{I}=0)$	$\boldsymbol{\checkmark}(\mathrm{I}=0,1)$	-	-
O_{GG}	-	-	\checkmark	\checkmark	-	-
$\mathrm{O}_{\mathrm{A}}^{\mathrm{q}}$	-	-	-	-	$\checkmark(\mathrm{I}=1)$	$\checkmark(\mathrm{I}=0)$
$\mathrm{O}_{\mathrm{P}}^{\mathrm{q}}$	-	-	-	-	$\checkmark(\mathrm{I}=1)$	$\boldsymbol{\checkmark}$
$\mathrm{O}_{\mathrm{G} \widetilde{\mathrm{G}}}$	-	-	-	-	-	\checkmark

- The notion of "best probe" (process with largest decay rate) is model dependent
- If observed, compare rate of processes \Rightarrow key handle on relative strength between operators and hence on the underlying mechanism

2.4 Model discriminating power of Tau processes

- Summary table:

	$\tau \rightarrow 3 \mu$	$\tau \rightarrow \mu \gamma$	$\tau \rightarrow \mu \pi^{+} \pi^{-}$	$\tau \rightarrow \mu K \bar{K}$	$\tau \rightarrow \mu \pi$	$\tau \rightarrow \mu \eta^{(\prime)}$
$\mathrm{O}_{\mathrm{S}, \mathrm{V}}^{4 \ell}$	\checkmark	-	-	-	-	-
O_{D}	\checkmark	\checkmark	\checkmark	\checkmark	-	-
$\mathrm{O}_{\mathrm{V}}^{\mathrm{q}}$	-	-	$\checkmark(\mathrm{I}=1)$	$\checkmark(\mathrm{I}=0,1)$	-	-
$\mathrm{O}_{\mathrm{S}}^{\mathrm{q}}$	-	-	$\checkmark(\mathrm{I}=0)$	$\checkmark(\mathrm{I}=0,1)$	-	-
O_{GG}	-	-	\checkmark	\checkmark	-	-
$\mathrm{O}_{\mathrm{A}}^{\mathrm{q}}$	-	-	-	-	$\checkmark(\mathrm{I}=1)$	$\checkmark(\mathrm{I}=0)$
$\mathrm{O}_{\mathrm{P}}^{\mathrm{q}}$	-	-	-	-	$\checkmark(\mathrm{I}=1)$	$\checkmark(\mathrm{I}=0)$
$\mathrm{O}_{\mathrm{G} \widetilde{ }}$	-	-	-	-	-	\checkmark

- In addition to leptonic and radiative decays, hadronic decays are very important sensitive to large number of operators!
- But need reliable determinations of the hadronic part: form factors and decay constants (e.g. f_{η}, f_{η},)

2.5 Ex: Non standard LFV Higgs coupling

In the SM: $\quad \boldsymbol{Y}_{i j}^{\boldsymbol{h}_{S M}}=\frac{\boldsymbol{m}_{\boldsymbol{i}}}{\mathbf{v}} \boldsymbol{\delta}_{i j}$

$$
L_{Y}=-m_{i} \bar{f}_{L}^{i} f_{R}^{i}-h\left(Y_{e \mu} \bar{e}_{L} \mu_{R}+Y_{e \tau} \bar{e}_{L} \tau_{R}+Y_{\mu \tau} \bar{\mu}_{L} \tau_{R}\right)+\ldots
$$

Goudelis, Lebedev, Park'11 Davidson, Grenier'10 Harnik, Kopp, Zupan'12
Blankenburg, Ellis, Isidori'12 McKeen, Pospelov, Ritz'12
Arhrib, Cheng, Kong'12

- Arise in several models Cheng, Sher'97, Goudelis, Lebedev,Park'11 Davidson, Grenier'10

Cheng, Sher'97

- Order of magnitude expected \square No tuning:

$$
\left|Y_{\tau \mu} Y_{\mu \tau}\right| \lesssim \frac{m_{\mu} m_{\tau}}{v^{2}}
$$

- In concrete models, in general further parametrically suppressed

2.5 Ex: Non standard LFV Higgs coupling

$\Delta \mathcal{C}_{Y}=-\frac{\lambda_{i j}}{\Lambda^{2}}\left(\bar{f}_{L}^{i} f_{R}^{j} H\right) H^{\dagger} H$

- High energy : LHC

In the SM: $\quad \boldsymbol{Y}_{i j}^{\boldsymbol{h}_{S M}}=\frac{\boldsymbol{m}_{\boldsymbol{i}}}{\mathbf{v}} \boldsymbol{\delta}_{i j}$ QCD

Goudelis, Lebedev, Park'11
Davidson, Grenier'10
Harnik, Kopp, Zupan'12
Blankenburg, Ellis, Isidori'12
McKeen, Pospelov, Ritz'12
Arhrib, Cheng, Kong'12

Hadronic part treated with perturbative

- Low energy : D, S, G operators

Hadronic part treated with non-perturbative QCD

2.6 Constraints from $\tau \rightarrow \mu \pi \pi$

- Tree level Higgs exchange

- Problem : Have the hadronic part under control, ChPT not valid at these energies! $s=\left(p_{\pi^{+}}+p_{\pi^{-}}\right)^{2} \Rightarrow \sqrt{s} \leq m_{\tau}-m_{\mu}$
\square Use form factors determined with dispersion relations matched at low energy to CHPT

Daub, Dreiner, Hanart, Kubis, Meissner'13
Celis, Cirigliano, E.P.' 14

- Dispersion relations: based on unitarity, analyticity and crossing symmetry \square Take all rescattering effects into account
$\pi \pi$ final state interactions important

3. Description of the hadronic form factors

3.1 Constraints from $\tau \rightarrow \mu \pi \pi$

- Photon mediated contribution requires the pion vector form factor:

$$
\left\langle\pi^{+}\left(p_{\pi^{+}}\right) \pi^{-}\left(p_{\pi^{-}}\right)\right| \frac{1}{2}\left(\bar{u} \gamma^{\alpha} u-\bar{d} \gamma^{\alpha} d\right)|0\rangle \equiv F_{V}(s)\left(p_{\pi^{+}}-p_{\pi^{-}}\right)^{\alpha}
$$

- Dispersive parametrization following the properties of analyticity and unitarity of the Form Factor

Gasser, Meißner'91
Guerrero, Pich'97
Oller, Oset, Palomar'01 Pich, Portolés '08
Gómez Dumm\&Roig'13

- Determined from a fit

Celis, Cirigliano, E.P.'14

3.1 Constraints from $\tau \rightarrow \mu \pi \pi$

- Tree level Hags exchange

$\left\langle\pi^{+} \pi^{-}\right| m_{u} \bar{u} u+m_{d} \bar{d} d|0\rangle \equiv \Gamma_{\pi}(s) \quad\left\langle\pi^{+} \pi^{-}\right| \theta_{\mu}^{\mu}|0\rangle \equiv \theta_{\pi}(s)$
$\left\langle\pi^{+} \pi^{-}\right| m_{s} \bar{s} s|0\rangle \equiv \Delta_{\pi}(s)$

$$
\theta_{\mu}^{\mu}=-9 \frac{\alpha_{s}}{8 \pi} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\sum_{q=u, d, s} m_{q} \bar{q} q
$$

$$
\frac{d \Gamma\left(\tau \rightarrow \mu \pi^{+} \pi^{-}\right)}{d \sqrt{s}}=\frac{\left(m_{\tau}^{2}-s\right)^{2} \sqrt{s-4 m_{\pi}^{2}}}{256 \pi^{3} m_{\tau}^{3}} \frac{\left(\left|Y_{\tau \mu}^{h}\right|^{2}+\left|Y_{\mu \tau}^{h}\right|^{2}\right)}{M_{h}^{4} v^{2}}\left|\mathcal{K}_{\Delta} \Delta_{\pi}(s)+\mathcal{K}_{\Gamma} \Gamma_{\pi}(s)+\mathcal{K}_{\theta} \theta_{\pi}(s)\right|^{2}
$$

3.2 Unitarity

- Coupled channel analysis up to $\sqrt{ } \mathbf{s} \sim 1.4 \mathrm{GeV}$: Mushkhelishvili-Omnès approach Inputs: I=0, S-wave π m and KK data

Donoghue, Gasser, Leutwyler'90 Moussallam'99
See also Osset \& Oller'98 Lahde \& Meissner'06

Daub, Dreiner, Hanart, Kubis, Meissner'13
Celis, Cirigliano, E.P.'14

- Unitarity \square the discontinuity of the form factor is known

$$
\Rightarrow \quad \operatorname{Im} F_{n}(s)=\sum_{m=1}^{2} T_{n m}^{*}(s) \sigma_{m}(s) F_{m}(s)
$$

$$
n=\pi \pi, K \bar{K}
$$

Scattering matrix:

$$
\binom{\pi \pi \rightarrow \pi \pi, \pi \pi \rightarrow \boldsymbol{K} \overline{\boldsymbol{K}}}{\boldsymbol{K} \overline{\boldsymbol{K}} \rightarrow \pi \pi, \boldsymbol{K} \overline{\boldsymbol{K}} \rightarrow \boldsymbol{K} \overline{\boldsymbol{K}}}
$$

3.3 Inputs for the coupled channel analysis

- Inputs : $\pi \pi \rightarrow \pi \pi, \boldsymbol{K} \overline{\boldsymbol{K}}$

- A large number of theoretical analyses Descotes-Genon et al'01, Kaminsky et al'01, Buettiker et al'03, Garcia-Martin et al'09, Colangelo et al.' 11 and all agree
- 3 inputs: $\delta_{\pi}(\mathrm{s}), \delta_{K}(\mathrm{~s}), \eta$ from B. Moussallam \longrightarrow reconstruct T matrix

3.4 Dispersion relations

- General solution to Mushkhelishvili-Omnès problem:

$$
\binom{F_{\pi}(s)}{\frac{2}{\sqrt{3}} F_{K}(s)}=\left(\begin{array}{cc}
C_{1}(s) & D_{1}(s) \\
C_{2}(s) & D_{2}(s)
\end{array}\right)\binom{P_{F}(s)}{Q_{F}(s)}
$$

Canonical solution falling as $1 / \mathrm{s}$ for large s (obey unsubtracted dispersion relations)

Polynomial determined from a matching to ChPT + lattice

Canonical solution $X(s)=C(s), D(s)$:

- Knowing the discontinuity of $X(s) \Rightarrow$ write a dispersion relation for it
- Analyticity of the FFs: $\mathrm{X}(\mathrm{z})$ is
- real for $z<S_{\text {th }}$
- has a branch cut for $z>s_{\text {th }}$
- analytic for complex z
- Cauchy Theorem and Schwarz reflection principle:

$$
\begin{aligned}
X(s) & =\frac{1}{\pi} \oint_{C} d z \frac{X(z)}{z-s} \\
& =\frac{1}{2 i \pi} \int_{s_{s_{h}}=4 M_{\pi}^{2}}^{\Lambda^{2}} d z \frac{\operatorname{disc}[F(z)]}{z-s-i \varepsilon}+\frac{1}{2 i \pi} \int_{|z|=\Lambda^{2}} d z \frac{F(z)}{z-s}
\end{aligned}
$$

$$
\Lambda \rightarrow \infty
$$

$$
X(s)=\frac{1}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d z \frac{\operatorname{Im}[X(z)]}{z-s-i \varepsilon}
$$

X(s) can be reconstructed everywhere from the knowledge of $\operatorname{ImX}(\mathrm{s})$

3.4 Dispersion relations

- General solution to Mushkhelishvili-Omnès problem:

$$
\binom{F_{\pi}(s)}{\frac{2}{\sqrt{3}} F_{K}(s)}=\left(\begin{array}{cc}
C_{1}(s) & D_{1}(s) \\
C_{2}(s) & D_{2}(s)
\end{array}\right)\binom{P_{F}(s)}{Q_{F}(s)}
$$

Canonical solution falling as $1 / \mathrm{s}$ for large s (obey unsubtracted dispersion relations)

- Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions

$$
X(s)=C(s), D(s)
$$

$$
\Omega_{\pi, K}(s) \equiv \exp \left[\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} \frac{d t}{t} \frac{\delta_{\pi, K}(t)}{(t-s)}\right]=\boldsymbol{X}(\boldsymbol{s})
$$

3.4 Dispersion relations

- General solution to Mushkhelishvili-Omnès problem:

$$
\binom{F_{\pi}(s)}{\frac{2}{\sqrt{3}} F_{K}(s)}=\left(\begin{array}{cc}
C_{1}(s) & D_{1}(s) \\
C_{2}(s) & D_{2}(s)
\end{array}\right)\binom{P_{F}(s)}{Q_{F}(s)}
$$

Canonical solution falling as $1 / \mathrm{s}$ for large s (obey unsubtracted dispersion relations)

- Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions

Polynomial determined from a matching to ChPT + lattice

$$
X(s)=C(s), D(s)
$$

Determination of the polynomial

- Fix the polynomial with requiring

$$
F_{P}(s) \rightarrow 1 / s+\mathrm{ChPT}:
$$

Brodsky \& Lepage'80

- Feynman-Hellmann theorem:

$$
\Gamma_{P}(0)=\left(m_{u} \frac{\partial}{\partial m_{u}}+m_{d} \frac{\partial}{\partial m_{d}}\right) M_{P}^{2}
$$

$$
\Delta_{P}(0)=\left(m_{s} \frac{\partial}{\partial m_{s}}\right) M_{P}^{2}
$$

- At LO in ChPT:

$$
\begin{aligned}
& M_{\pi^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{d}}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{0}}^{2}=\left(m_{\mathrm{d}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right)
\end{aligned}
$$

Determination of the polynomial

- Fix the polynomial with requiring

$$
F_{P}(s) \rightarrow 1 / s+\text { ChPT: }
$$

Brodsky \& Lepage'80

- Feynman-Hellmann theorem:

$$
\Gamma_{P}(0)=\left(m_{u} \frac{\partial}{\partial m_{u}}+m_{d} \frac{\partial}{\partial m_{d}}\right) M_{P}^{2}
$$

$$
\Delta_{P}(0)=\left(m_{s} \frac{\partial}{\partial m_{s}}\right) M_{P}^{2}
$$

- At LO in ChPT:

$$
\begin{aligned}
& M_{\pi^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{d}}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{0}}^{2}=\left(m_{\mathrm{d}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
P_{\Gamma}(s) & =\Gamma_{\pi}(0)=M_{\pi}^{2}+\cdots \\
Q_{\Gamma}(s) & =\frac{2}{\sqrt{3}} \Gamma_{K}(0)=\frac{1}{\sqrt{3}} M_{\pi}^{2}+\cdots \\
P_{\Delta}(s) & =\Delta_{\pi}(0)=0+\cdots \\
Q_{\Delta}(s) & =\frac{2}{\sqrt{3}} \Delta_{K}(0)=\frac{2}{\sqrt{3}}\left(M_{K}^{2}-\frac{1}{2} M_{\pi}^{2}\right)+\cdots
\end{aligned}
$$

Determination of the polynomial

- At LO in ChPT:

$$
\begin{aligned}
& M_{\pi^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{d}}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{+}}^{2}=\left(m_{\mathrm{u}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right) \\
& M_{K^{0}}^{2}=\left(m_{\mathrm{d}}+m_{\mathrm{s}}\right) B_{0}+O\left(m^{2}\right)
\end{aligned}
$$

- For the scalar FFs:

$$
\begin{aligned}
P_{\Gamma}(s) & =\Gamma_{\pi}(0)=M_{\pi}^{2}+\cdots \\
Q_{\Gamma}(s) & =\frac{2}{\sqrt{3}} \Gamma_{K}(0)=\frac{1}{\sqrt{3}} M_{\pi}^{2}+\cdots \\
P_{\Delta}(s) & =\Delta_{\pi}(0)=0+\cdots \\
Q_{\Delta}(s) & =\frac{2}{\sqrt{3}} \Delta_{K}(0)=\frac{2}{\sqrt{3}}\left(M_{K}^{2}-\frac{1}{2} M_{\pi}^{2}\right)+\cdots
\end{aligned}
$$

- Problem: large corrections in the case of the kaons! \square Use lattice QCD to determine the SU(3) LECs

$$
\begin{aligned}
& \Gamma_{K}(0)=(0.5 \pm 0.1) M_{\pi}^{2} \\
& \Delta_{K}(0)=1_{-0.05}^{+0.15}\left(M_{K}^{2}-1 / 2 M_{\pi}^{2}\right)
\end{aligned}
$$

4. Results

4.2 Bounds

Celis, Cirigliano, E.P.'14

Bound:

$$
\sqrt{\left|Y_{\mu \tau}^{h}\right|^{2}+\left|Y_{\tau \mu}^{h}\right|^{2}} \leq 0.13
$$

Process	$\left(\mathrm{BR} \times 10^{8}\right) 90 \% \mathrm{CL}$	$\sqrt{\left\|Y_{\mu \tau}^{h}\right\|^{2}+\left\|Y_{\tau \mu}^{h}\right\|^{2}}$	Operator(s)
$\tau \rightarrow \mu \gamma$	$<4.4[88]$	<0.016	Dipole
$\tau \rightarrow \mu \mu \mu$	$<2.1[89]$	<0.24	Dipole
$\tau \rightarrow \mu \pi^{+} \pi^{-}$	$<2.1[86]$	<0.13	Scalar, Gluon, Dipole
$\tau \rightarrow \mu \rho$	$<1.2[85]$	<0.13	Scalar, Gluon, Dipole
$\tau \rightarrow \mu \pi^{0} \pi^{0}$	$<1.4 \times 10^{3}[87]$	<6.3	Scalar, Gluon
τ			

Less stringent but more robust handle on LFV Higgs couplings

4.3 Impact of our results

- Dispersive treatment of hadronic part \square bound reduced by one order of magnitude!
- ChPT, EFT only valid at low energy for $\mathrm{p} \ll \Lambda=4 \pi f_{\pi} \sim \mathbf{1} \mathbf{~ G e V}$ \rightleftarrows not valid up to $E=\left(m_{\tau}-m_{\mu}\right)$!

4.4 Constraints in the $\tau \mu$ sector

- Constraints from LE:
$>\tau \rightarrow \mu \gamma$: best constraints but loop level \Rightarrow sensitive to UV completion of the theory
$>\tau \rightarrow \mu \pi \pi$: tree level diagrams \Rightarrow robust handle on LFV
- Constraints from HE:

LHC wins for $\tau \mu$!

- Opposite situation for $\mu \mathrm{e}$!
- For LFV Higgs and nothing else: LHC bound

$$
\begin{aligned}
& B R(\tau \rightarrow \mu \gamma)<2.2 \times 10^{-9} \\
& B R(\tau \rightarrow \mu \pi \pi)<1.5 \times 10^{-11}
\end{aligned}
$$

4.5 Hint of New Physics in $h \rightarrow \tau \mu$?

CMS'16

4.5 Hint of New Physics in $h \rightarrow \tau \mu$?

CMS'17

4.6 What if $\tau \rightarrow \mu(\mathrm{e}) \pi \pi$ is observed?

Talk by J. Zupan
@ KEK-FF2014FALL

4.6 What if $\tau \rightarrow \mu(\mathrm{e}) \pi \pi$ is observed?

Talk by J. Zupan
@ KEK-FF2014FALL

4.6 What if $\tau \rightarrow \mu(\mathrm{e}) \pi \pi$ is observed?

- $\quad \tau \rightarrow \mu(e) \pi \pi$ sensitive to $\mathrm{Y}_{\mu \tau}$ but also to $Y_{u, d, s}$!
- $Y_{u, d, s}$ poorly bounded
- For $Y_{\mu, d, s}$ at their $S M$ values :

$$
\begin{aligned}
& \operatorname{Br}\left(\tau \rightarrow \mu \pi^{+} \pi^{-}\right)<1.6 \times 10^{-11}, \operatorname{Br}\left(\tau \rightarrow \mu \pi^{0} \pi^{0}\right)<4.6 \times 10^{-12} \\
& \operatorname{Br}\left(\tau \rightarrow e \pi^{+} \pi^{-}\right)<2.3 \times 10^{-10}, \operatorname{Br}\left(\tau \rightarrow e \pi^{0} \pi^{0}\right)<6.9 \times 10^{-11}
\end{aligned}
$$

- But for $Y_{\mu, d, s}$ at their upper bound:

$$
\begin{aligned}
& \operatorname{Br}\left(\tau \rightarrow \mu \pi^{+} \pi^{-}\right)<3.0 \times 10^{-8}, \operatorname{Br}\left(\tau \rightarrow \mu \pi^{0} \pi^{0}\right)<1.5 \times 10^{-8} \\
& \operatorname{Br}\left(\tau \rightarrow e \pi^{+} \pi^{-}\right)<4.3 \times 10^{-7}, \operatorname{Br}\left(\tau \rightarrow e \pi^{0} \pi^{0}\right)<2.1 \times 10^{-7}
\end{aligned}
$$

below present experimental limits!

- If discovered \Rightarrow upper limit on $Y_{u, d, s}$!
\Rightarrow Interplay between high-energy and low-energy constraints!

4.7 Discriminating power of $\tau \rightarrow \mu(\mathrm{e}) \pi \pi$ decays

4.7 Discriminating power of $\tau \rightarrow \mu(\mathrm{e}) \pi \pi$ decays

4.7 Discriminating power of $\tau \rightarrow \mu(\mathrm{e}) \pi \pi$ decays

Different distributions according to the operator!

5. Conclusion and Outlook

- Direct searches for new physics at the TeV-scale at LHC by ATLAS and CMS \square energy frontier
- Probing new physics orders of magnitude beyond that scale and helping to decipher possible TeV-scale new physics requires to work hard on the intensity and precision frontiers
- Charged LFV are a very important probe of new physics
> Extremely small SM rates
> Experimental results at low energy are very precise
\Rightarrow very high scale sensitivity
- CLFV decays excellent model discriminating tools especially τ decays Hadronic decays such as $\tau \rightarrow \mu(e) \pi \tau$ important!
- To consider hadronic decays, need to control the hadronic uncertainties: need to know hadronic matrix elements, form factors etc.
- For $\tau \rightarrow \mu(e) \pi \pi$: need to know the $\pi \pi$ form factors
\square Use dispersion relations
- Dispersion relations rely on analyticity, unitarity and crossing symmetry \Rightarrow Rigorous treatment of two and three hadronic final state
- $\tau \rightarrow \mu(e) \pi \pi$ gives interesting constraints on LFV new physics operators involving quarks
- Interplay low energy and collider physics: LFV of the Higgs boson
- Complementarity with LFC sector: EDMs, g-2 and colliders:
\Rightarrow New physics models usually strongly correlate these sectors

6. Back-up

T matrix parametrization

$$
S_{m n}=\delta_{m n}+2 i \sqrt{\sigma_{m} \sigma_{n}} T_{m n}
$$

$S=\left(\begin{array}{cc}\cos \gamma e^{2 i \delta_{\pi}} & i \sin \gamma e^{i\left(\delta_{\pi}+\delta_{K}\right)} \\ i \sin \gamma e^{i\left(\delta_{\pi}+\delta_{K}\right)} & \cos \gamma e^{2 i \delta_{K}}\end{array}\right)$

- Inelasticity: $\eta_{0}^{0} \equiv \cos \gamma$.
- $\delta_{\pi}(s): \pi \pi S$ wave phase shift
- $\delta_{K}(s)$: KK S wave phase shift

3.1 Constraints from $\tau \rightarrow \mu \pi \pi$

- Contribution from dipole diagrams

$$
L_{e f f}=c_{L} Q_{L \gamma}+c_{R} Q_{R \gamma}+h . c .
$$

with the dim-5 EM penguin operators :

$$
Q_{L \gamma, R \gamma}=\frac{e}{8 \pi^{2}} m_{\tau}\left(\mu \sigma^{\alpha \beta} P_{L, R} \tau\right) F_{\alpha \beta}
$$

- $\frac{d \Gamma\left(\tau \rightarrow \ell \pi^{+} \pi^{-}\right)}{d \sqrt{s}}=\frac{\alpha^{2}\left|F_{V}(s)\right|^{2}\left(\left|c_{L}\right|^{2}+\left|c_{R}\right|^{2}\right)}{768 \pi^{5} m_{\tau}} \frac{\left(s-4 m_{\pi}^{2}\right)^{3 / 2}\left(m_{\tau}^{2}-s\right)^{2}\left(s+2 m_{\tau}^{2}\right)}{s^{2}}$
with the vector form factor :

$$
C_{L, R}=f\left(Y_{q u}\right)
$$

$$
\left\langle\pi^{+}\left(p_{\pi^{+}}\right) \pi^{-}\left(p_{\pi^{-}}\right)\right| \frac{1}{2}\left(\bar{u} \gamma^{\alpha} u-\bar{d} \gamma^{\alpha} d\right)|0\rangle \equiv F_{V}(s)\left(p_{\pi^{+}}-p_{\pi^{-}}\right)^{\alpha}
$$

- Diagram only there in the case of $\tau^{-} \rightarrow \mu^{-} \pi^{+} \pi^{-}$absent for $\tau^{-} \rightarrow \mu^{-} \pi^{0} \pi^{0}$ \Rightarrow neutral mode more model independent

Determination of $\mathrm{F}_{\mathrm{V}}(\mathrm{s})$

- Vector form factor
> Precisely known from experimental measurements

$$
\boldsymbol{e}^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \text {and } \tau^{-} \rightarrow \pi^{0} \pi^{-} \boldsymbol{v}_{\tau} \text { (isospin rotation) }
$$

> Theoretically: Dispersive parametrization for $\mathrm{F}_{\mathrm{V}}(\mathrm{s})$
Guerrero, Pich'98, Pich, Portolés'08

$$
\left.F_{V}(s)=\exp \left[\lambda_{V}^{\prime} \frac{s}{m_{\pi}^{2}}+\frac{1}{2}\left(\lambda_{V}^{\prime \prime}-\lambda_{V}^{\prime 2}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2}+\frac{s^{3}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime 3}} \frac{\phi_{V}\left(s^{\prime}\right)}{\left(s^{\prime} \mathcal{F}-i \varepsilon\right)}\right]\right]
$$

Extracted from a model including 3 resonances $\rho(770)$, $\rho^{\prime}(1465)$ and $\rho "(1700)$ fitted to the data
>Subtraction polynomial + phase determined from a fit to the Belle data $\boldsymbol{\tau}^{-} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\pi}^{-} \boldsymbol{v}_{\boldsymbol{\tau}}$

Determination of $\mathrm{F}_{\mathrm{V}}(\mathrm{s})$

Determination of $\mathrm{F}_{\mathrm{V}}(\mathrm{s})$ thanks to precise measurements from Belle!

CPV AND FV HIGGS

COUPLINGS TO SM FERMIONS

- if SM an EFT, the Yukawas get corrected by higher dim. ops

$$
\mathcal{L}_{S M}=-\left[\lambda_{i j}\left(\bar{f}_{L}^{i} f_{R}^{j}\right) H+\text { h.c. }\right]
$$

$$
\Delta \mathcal{L}_{Y}=-\frac{\lambda_{i j}^{\prime}}{\Lambda^{2}}\left(\bar{f}_{L}^{i} f_{R}^{j}\right) H\left(H^{\dagger} H\right)+\text { h.c. }+\cdots
$$

- decouples mass terms from yukawas

$$
\mathcal{L}_{Y}=-m_{i} \bar{f}_{L}^{i} f_{R}^{i}-Y_{i j}\left(\bar{f}_{L}^{i} f_{R}^{j}\right) h+h . c .+\cdots
$$

- can lead to flavor violating Higgs decays
- can lead to CPV Higgs decays
- different models lead to different patterns of flavor diagonal and flavor violating Yukawas

A GENERAL BENCHMARK

- what is a reasonable aim for precision on $Y_{i j}$?
- if off-diagonals are large \Rightarrow spectrum in general not hierarchical
- no tuning, if

$$
\left|Y_{\tau \mu} Y_{\mu \tau}\right| \lesssim \frac{m_{\mu} m_{\tau}}{v^{2}}
$$

- in concrete models it will be typically further suppressed parametrically

SUMMARY OF MODELS

- an example: higgs couplings to 2nd\&3rd gen. charged leptons
adapted from Dery, Efrati, Hochberg, Nir, 1302.3229 and extended

Model	$\hat{\mu}_{\tau \tau}$	$\left(\hat{\mu}_{\mu \mu} / \hat{\mu}_{\tau \tau}\right) /\left(m_{\mu}^{2} / m_{\tau}^{2}\right)$	$\hat{\mu}_{\mu \tau} / \hat{\mu}_{\tau \tau}$
SM	1	1	0
NFC	$\left(V_{h \ell}^{*} v / v_{\ell}\right)^{2}$	1	0
MSSM	$(\sin \alpha / \cos \beta)^{2}$	1	0
MFV	$1+2 a v^{2} / \Lambda^{2}$	$1-4 b m_{\tau}^{2} / \Lambda^{2}$	0
FN	$1+\mathcal{O}\left(v^{2} / \Lambda^{2}\right)$	$1+\mathcal{O}\left(v^{2} / \Lambda^{2}\right)$	$\mathcal{O}\left(\left\|U_{23}\right\|^{2} v^{4} / \Lambda^{4}\right)$
GL	9	$25 / 9$	$\mathcal{O}\left(\hat{\mu}_{\mu \mu} / \hat{\mu}_{\tau \tau}\right)$
RS (i)	$1+\mathcal{O}\left(\bar{Y}^{2} v^{2} / m_{K K}^{2}\right)$	$1+\mathcal{O}\left(\bar{Y}^{2} v^{2} / m_{K K}^{2}\right)$	$\mathcal{O}\left(\bar{Y}^{2} v^{2} / m_{K K}^{2}\right) \sqrt{m_{\tau} / m_{\mu}}$
RS (ii)	$1+\mathcal{O}\left(\bar{Y}^{2} v^{2} / m_{K K}^{2}\right)$	$1+\mathcal{O}\left(\bar{Y}^{2} v^{2} / m_{K K}^{2}\right)$	$\mathcal{O}\left(\bar{Y}^{2} v^{2} / m_{K K}^{2}\right)$
PGB (1 rep.)	$1-v^{2} / f^{2}$	1	0

3.3 Handles

- Two handles:
$>$ Branching ratios: $\boldsymbol{R}_{F, M} \equiv \frac{\Gamma(\tau \rightarrow \boldsymbol{F})}{\Gamma\left(\tau \rightarrow F_{M}\right)}$ with F_{M} dominant LFV mode for model M
$>$ Spectra for >2 bodies in the final state:

$$
\frac{d B R\left(\tau \rightarrow \mu \pi^{+} \pi^{-}\right)}{d \sqrt{s}} \text { and } d R_{\pi^{+} \pi^{-}} \equiv \frac{1}{\Gamma(\tau \rightarrow \mu \gamma)} \frac{d \Gamma\left(\tau \rightarrow \mu \pi^{+} \pi^{-}\right)}{d \sqrt{s}}
$$

- Benchmarks:
$>$ Dipole model: $\mathrm{C}_{\mathrm{D}} \neq 0, \mathrm{C}_{\text {else }}=0$
\Rightarrow Scalar model: $\mathrm{C}_{\mathrm{S}} \neq 0, \mathrm{C}_{\text {else }}=0$
$>$ Vector (gamma, Z) model: $C_{V} \neq 0, C_{\text {else }}=0$
$>$ Gluonic model: $\mathrm{C}_{\mathrm{GG}} \neq 0, \mathrm{C}_{\text {else }}=0$

3.3 Branching ratios

- Two handles:

Wo handles:
$>$ Branching ratios: $\boldsymbol{R}_{F, M} \equiv \frac{\Gamma(\tau \rightarrow \boldsymbol{F})}{\Gamma\left(\tau \rightarrow F_{M}\right)}$ with F_{M} dominant LFV mode for model M

		$\mu \pi^{+} \pi^{-}$	$\mu \rho$	μf_{0}	3μ	$\mu \gamma$
D	$R_{F, D}$	0.26×10^{-2}	0.22×10^{-2}	0.13×10^{-3}	0.22×10^{-2}	1
\uparrow	BR	$<1.1 \times 10^{-10}$	$<9.7 \times 10^{-11}$	$<5.7 \times 10^{-12}$	$<9.7 \times 10^{-11}$	$<4.4 \times 10^{-8}$

- $\quad \rho(770)$ resonance ($\mathrm{JPC}^{\mathrm{PC}}=1-$): cut in the $\pi^{+} \pi^{-}$invariant mass: $587 \mathrm{MeV} \leq \sqrt{s} \leq 962 \mathrm{MeV}$
- $\mathrm{f}_{0}(980)$ resonance $\left(\mathrm{JPC}^{\mathrm{P}}=0^{++}\right)$: cut in the $\pi^{+} \pi^{-}$invariant mass: $906 \mathrm{MeV} \leq \sqrt{s} \leq 1065 \mathrm{MeV}$

3.3 Branching ratios

- Two handles:
$>$ Branching ratios: $\boldsymbol{R}_{F, M} \equiv \frac{\Gamma(\tau \rightarrow \boldsymbol{F})}{\Gamma\left(\tau \rightarrow F_{M}\right)}$ with F_{M} dominant LFV mode for model M

		$\mu \pi^{+} \pi^{-}$	$\mu \rho$	μf_{0}	3μ	$\mu \gamma$
D	$\begin{gathered} \hline R_{F, D} \\ \mathrm{BR} \end{gathered}$	$\begin{gathered} 0.26 \times 10^{-2} \\ <1.1 \times 10^{-10} \end{gathered}$	$\begin{gathered} 0.22 \times 10^{-2} \\ <9.7 \times 10^{-11} \end{gathered}$	$\begin{gathered} 0.13 \times 10^{-3} \\ <5.7 \times 10^{-12} \end{gathered}$	$\begin{gathered} 0.22 \times 10^{-2} \\ <9.7 \times 10^{-11} \end{gathered}$	$\begin{gathered} 1 \\ <4.4 \times 10^{-8} \end{gathered}$
S	$\begin{gathered} R_{F, S} \\ \mathrm{BR} \end{gathered}$	$\begin{gathered} 1 \\ <2.1 \times 10^{-8} \end{gathered}$	$\begin{gathered} 0.28 \\ <\quad 5.9 \times 10^{-9} \end{gathered}$	$\begin{gathered} 0.7 \\ <1.47 \times 10^{-8} \\ \hline \end{gathered}$		
$\mathrm{V}^{(\gamma)}$	$\begin{gathered} R_{F, V(\gamma)} \\ \text { BR } \end{gathered}$	$\begin{gathered} 1 \\ <1.4 \times 10^{-8} \end{gathered}$	$\begin{gathered} 0.86 \\ <1.2 \times 10^{-8} \end{gathered}$	$\begin{gathered} 0.1 \\ <1.4 \times 10^{-9} \end{gathered}$		
Z	$\begin{gathered} R_{F, Z} \\ \mathrm{BR} \end{gathered}$	$\begin{gathered} 1 \\ <\quad 1.4 \times 10^{-8} \end{gathered}$	$\begin{gathered} 0.86 \\ <1.2 \times 10^{-8} \end{gathered}$	$\begin{gathered} 0.1 \\ <1.4 \times 10^{-9} \end{gathered}$		
G	$\begin{gathered} R_{F, G} \\ \text { BR } \end{gathered}$	$\begin{gathered} 1 \\ <2.1 \times 10^{-8} \end{gathered}$	$\begin{gathered} 0.41 \\ <8.6 \times 10^{-9} \end{gathered}$	$\begin{gathered} 0.41 \\ <8.6 \times 10^{-9} \end{gathered}$		
	ark	7				 56

4.1 Constraints from $\tau \rightarrow 1 \mathrm{P}$

- Tree level Higgs exchange
$>\eta, \eta$ '

$$
\Gamma\left(\tau \rightarrow \ell \eta^{(\prime)}\right)=\frac{\bar{\beta}\left(m_{\tau}^{2}-m_{\eta}^{2}\right)\left(\left|Y_{\mu \tau}^{A}\right|^{2}+\left|Y_{\tau \mu}^{A}\right|^{2}\right)}{256 \pi M_{A}^{4} v^{2} m_{\tau}}\left[\left(y_{u}^{A}+y_{d}^{A}\right) h_{\eta^{\prime}}^{q}+\sqrt{2} y_{s}^{A} h_{\eta^{\prime}}^{s}-\sqrt{2} a_{\eta^{\prime}} \sum_{q=c, b, t} y_{q}^{A}\right]^{2}
$$

with the decay constants :

$$
\begin{aligned}
& \left\langle\eta^{(\prime)}(p)\right| \bar{q} \gamma_{5} q|0\rangle=-\frac{i}{2 \sqrt{2} m_{q}} h_{\eta^{(\prime)}}^{q} \quad\left\langle\eta^{(\prime)}(p)\right| \bar{s} \gamma_{5} s|0\rangle=-\frac{i}{2 m_{s}} h_{\eta^{(\prime)}}^{s} \\
& \left\langle\eta^{(\prime)}(p)\right| \frac{\alpha_{s}}{4 \pi} G_{a}^{\mu \nu} \widetilde{G}_{\mu \nu}^{a}|0\rangle=a_{\eta^{(\prime)}}
\end{aligned}
$$

$$
>\pi: \quad \Gamma\left(\tau \rightarrow \ell \pi^{0}\right)=\frac{f_{\pi}^{2} m_{\pi}^{4} m_{\tau}}{256 \pi M_{A}^{4} v^{2}}\left(\left|Y_{\tau \mu}^{A}\right|^{2}+\left|Y_{\mu \tau}^{A}\right|^{2}\right)\left(y_{u}^{A}-y_{d}^{A}\right)^{2}
$$

3.1 Constraints from $\tau \rightarrow \mu \pi \pi$

- Tree level Higgs exchange

$$
\begin{aligned}
& \left\langle\pi^{+} \pi^{-}\right| m_{s} \bar{s} s|0\rangle \equiv \Delta_{\pi}(s) \\
& \theta_{\mu}^{\mu}=-9 \frac{\alpha_{s}}{8 \pi} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\sum_{q=u, d, s} m_{q} \bar{q} q \\
& \square \Gamma_{\tau \rightarrow \mu \pi \pi} \propto \int\left|\Gamma_{\pi}(s)+\Delta_{\pi}(s)+\theta_{\pi}(s)\right|^{2} Y_{\tau u}^{2} \quad \text { with } \quad s=\left(p_{\pi^{+}}+p_{\pi^{-}}\right)^{2}
\end{aligned}
$$

4.5 Interplay between LHC \& Low Energy

- If real what type of NP?
- If $h \rightarrow \tau \mu$ due to loop corrections:
- extra charged particles necessary
$-\tau \rightarrow \mu \gamma$ too large

- $h \rightarrow \tau \mu$ possible to explain if extra scalar doublet:
$\Rightarrow 2 H D M$ of type III

- Constraints from $\tau \rightarrow \mu \nu$ important! \Rightarrow Belle II

4.5 Interplay between LHC \& Low Energy

- 2HDMs with gauged $L_{\mu}-L_{\tau}$ $\Rightarrow Z^{\prime}$, explain anomalies for
$-\mathrm{h} \rightarrow \tau \mu$
$-B \rightarrow K^{*} \mu \mu$
- $\mathrm{R}_{\mathrm{K}}=\mathrm{B} \rightarrow \mathrm{K} \mu \mu / \mathrm{B} \rightarrow \mathrm{Kee}$
- Constraints from $\tau \rightarrow 3 \mu$ crucial \Rightarrow Belle II, LHCb
- See also:

Aristizabal-Sierra \& Vicente'14, Lima et al'15,
Omhura, Senaha, Tobe '15

Altmannshofer \& Straub'14, Crivellin et al'15
Crivellin, D'Ambrosio, Heeck.'15

4.5 Hint of New Physics in $h \rightarrow \tau \mu$? See talk by A. Crivellin

$$
B R(h \rightarrow \tau \mu)=\left(0.84_{-0.37}^{+0.39}\right) \% \quad @ 2.4 \sigma
$$

CMS'15

$$
B R(h \rightarrow \tau \mu)=(0.53 \pm 0.51) \% \text { @1 } \sigma
$$

ATLAS'15

\square

$$
B R(h \rightarrow \tau \mu)=\left(-0.76_{-0.84}^{+0.81}\right) \%
$$

2.2 CLFV processes: tau decays

- Several processes: $\tau \rightarrow \ell \gamma, \tau \rightarrow \ell_{\alpha} \bar{\ell}_{\beta} \ell_{\beta}, \tau \rightarrow \ell \boldsymbol{K}_{\boldsymbol{R}}, S, V, P \bar{P}, \ldots$

- Expected sensitivity 10^{-9} or better at LHCb , Belle II?

Determination of the polynomial

- For θ_{p} enforcing the asymptotic constraint is not consistent with ChPT The unsubtracted DR is not saturated by the 2 states

Relax the constraints and match to ChPT

$$
\begin{aligned}
P_{\theta}(s) & =2 M_{\pi}^{2}+\left(\dot{\theta}_{\pi}-2 M_{\pi}^{2} \dot{C}_{1}-\frac{4 M_{K}^{2}}{\sqrt{3}} \dot{D}_{1}\right) s \\
Q_{\theta}(s) & =\frac{4}{\sqrt{3}} M_{K}^{2}+\frac{2}{\sqrt{3}}\left(\dot{\theta}_{K}-\sqrt{3} M_{\pi}^{2} \dot{C}_{2}-2 M_{K}^{2} \dot{D}_{2}\right) s
\end{aligned}
$$

with $\dot{f}=\left(\frac{d f}{d s}\right)_{s=0}$

- At LO ChPT: $\dot{\theta}_{\pi, K}=\mathbf{1}$
- Higher orders $\Rightarrow \dot{\theta}_{K}=1.15 \pm 0.1$

