

Sensitivity study of τ decays with an η meson at the Belle II experiment

Michel Hernández Villanueva Department of Physics CINVESTAV

24 May 2017

Outline:

- The $\tau \rightarrow \eta \pi \nu$ decay
 - Second class currents.
 - Previous results.
 - Reconstruction and cuts.
- The $\tau \rightarrow \eta \pi \pi^0 \nu$ decay
 - Previous measurements.
 - Reconstruction and cuts.

Second Class Currents

- Currents can be classified by their transformation properties under *G*-parity¹, $G = Ce^{i\pi I_2}$.
 - First-class currents: $J^{PG} = 0^{++}, 0^{--}, 1^{-+}, 1^{+-}, \dots$
 - Second-class currents (SCC):

$$J^{PG} = 0^{+-}, 0^{-+}, 1^{++}, 1^{--}, \dots$$

- Unsuccessful searches of SCC in nuclear Physics.
- Another possibility: Search in tau decays, using the channel²

$$\tau^- \to \eta \pi^- \nu_{\tau}$$

¹Weinberg, S. (1958). Physical Review, 112 (1978) ²Leroy, C., & Pestieau, J. (1978). Physics Letters B, 72(3), 398-399.

 $G|\bar{d}\gamma^{\mu}u\rangle = +|\bar{d}\gamma^{\mu}u\rangle$

$$\begin{aligned} G|\pi\rangle &= -|\pi\rangle\\ G|\eta\rangle &= +|\eta\rangle \end{aligned}$$

The $\tau \rightarrow \eta \pi \nu$ decay

• Mechanisms in the SM: Isospin violation

• BR($\tau \rightarrow \eta \pi \nu$) ~ 10⁻⁵

Accesible at Belle II luminosity. ¹

 The corresponding suppression of the SM contribution can make new physics visible.

¹ R. Escribano, S. Gonzalez, P. Roig; Phys.Rev. D94 (2016) no.3, 034008

Previous Results

- This decay mode should have already been discovered if there were no strong background.
- Control of the background is essential.

Belle II

 Super B-Factory (And *τ* factory too!)

> $\sigma(e^+e^- \longrightarrow \Upsilon(4s)) = 1.2 \text{ nb}$ $\sigma(e^+e^- \longrightarrow \tau \tau) = 0.8 \text{ nb}$

- Integrated luminosity expected: 50 ab⁻¹
- Full physics program: late 2018

Belle II MC samples

2 ways to reconstruct η

• Thrust axis: \hat{n}_{thrust} such that V_{thrust} is maximum.

au

au

 $\overline{
u}_\ell$

- 1-prong
- **BR(** $\eta \rightarrow \gamma \gamma$ **) = 39.41%**

Cinvestav

Michel H. Villanueva

 e^+

8

$\tau \rightarrow \eta \pi \nu$ signal events

- With simple selection criteria (tag + 1 or 3 charged + 2 or 3 γ), it's possible to reconstruct η mesons.
- Signal events generated: 2M

Michel H. Villanueva

Cinvestav

$\tau \rightarrow \eta \pi \nu$ bkg events

$\tau \rightarrow \eta \pi \nu$ bkg events

Eff: 0.028% Events / (0.001 3500 **3-prong** - MC events 1 ab⁻¹ MC $(a \rightarrow \pi^{-} \pi^{-} \pi^{+}) v$ 3000 $\pi^{-}\pi^{-}\pi^{+}\pi^{0}\nu$ Background sources: $\pi^{-}\omega\pi^{0}\nu$ 2500 $2\pi^{-}\pi^{+}2\pi^{0}\nu$ - $\tau\tau$ pair 2000 - bb pair 1500 - qq pair 1000 tau pair Eff: 5.6x10⁻⁶ 500 Events / (0.001) - MC events 100 bb pair B⁺B⁻ 0.5 0.51 0.57 0.58 0.52 0.53 0.54 0.55 0.56 0.59 0.6 Invariant Mass π+ππ⁰ [GeV/c²] $B^0\overline{B^0}$ Eff: 7.6x10⁻⁶ Events / (0.001) 005 80 ab⁻¹ MC - MC events 60 40 300 20 200 qq pair 100 0.52 0.54 0.55 0.56 0.58 0.59 0.6 0.51 0.53 0.57 1 ab⁻¹ MC Invariant Mass γγ [GeV/c²] 0.59 0.58 0.6 0.56 0.55 0.57 Michel H. Villanueva 11 Invariant Mass γγ [GeV/c²] Cinvestav

$\tau \rightarrow \eta \pi \nu$ bkg events

BDT variables

TMVA used for this test.

- ∠(η,π)
- ∠(p_{miss}, V_{thrust})
- $P_t(\eta)$
- $P_t(\pi)$
- $\eta(\eta)$

- $PID_e(\pi)$
- $\mathsf{PID}_{\mu}(\pi)$
- Ε(γ)
- M_{miss}

TMVA overtraining check for classifier: BDT

Correlation Matrix (signal) 100 -42 5 -5 -2 cos(θ_{mis} 60 $\#PID_{e}(\pi)$ 100 40 #PID_μ(π) 100 20 #PID_κ(π) -9 -21 -5 -12 100 $E(\gamma_1) + E(\gamma_2)$ -64 ∠(η,π) 42 100 -20 M_{miss} -40 -3 -2 -55 -60 Pt_η -3 -52 -7 -12 -9 -80 7 -23

Correlation Matrix (background) ∠(p_{mies} ,V_{thous} -3 -20 -44 1 -2 80 cos(θ_{mis} -52 -2 -1 11 8 60 3 -3 2 3 -2 11 -1 -9 100 #PID_e(π) 40 #PID_μ(π) 4 12 -13 -2 100 20 #PID_κ(π) 100 $E(\gamma_1) + E(\gamma_2)$ -1 -53 -13 100 9 -13 14 21 100 ∠(η,π) -20 M_{miss} 100 21 -53 -40 -52 -2 -25 -60 Pt₁ -18 -25 -49 -14 -17 -7 6 -3 4 -80 Pt_x 100 -9 37 7 -14

Cinvestav

Cinvestav

The $\tau \rightarrow \eta \pi \pi^0 \nu$ decay

- Previously measured by BELLE, ALEPH and CLEO. BR($\tau \rightarrow \eta \pi \pi^0 \nu$) = (1.39 ± 0.07) x10⁻³
- The contributions of scalar and pseudoscalar resonances are expected to be negligible.
 So, the corresponding amplitudes are driven by the vector current, allowing a precise study of the couplings in the odd-intrinsic parity sector.
- In the limit of the SU(2) isospin symmetry, is a good cross-check of consistency with $\sigma(e^+e^- \longrightarrow \eta \pi^+\pi^-)$ in the low energy region ¹

$$\frac{d\Gamma(\tau^- \to \eta \pi^- \pi^0 \nu_\tau)}{\mathrm{d}Q^2} = 2 f(Q^2) \sigma(e^+ e^- \to \eta \pi^+ \pi^-)$$

• For the hadronic contributions to the theoretical value of a_{μ} , experimental input from the measurement of the cross section $\sigma(e+e- \rightarrow hadrons)$ dominates.²

¹ D. Gómez Dumm and P. Roig; Phys. Rev. D 86, 076009 (2012) ² Waldi, R (BaBar Collaboration); PoS ICHEP2016 (2016) 682.

The $\tau \rightarrow \eta \pi \pi^0 \nu$ decay

- Previously measured by BELLE, ALEPH and CLEO. BR($\tau \rightarrow \eta \pi \pi^0 \nu$) = (1.39 ± 0.07) x10⁻³
- The contributions of scalar and pseudoscalar resonances are expected to be negligible.
 So, the corresponding amplitudes are driven by the vector current, allowing a precise study of the couplings in the odd-intrinsic parity sector.
- In the limit of the SU(2) isospin symmetry, is a good cross-check of consistency with $\sigma(e^+e^- \longrightarrow \eta \pi^+\pi^-)$ in the low energy region ¹

$$\frac{d\Gamma(\tau^- \to \eta \pi^- \pi^0 \nu_\tau)}{\mathrm{d}Q^2} = 2 f(Q^2) \sigma(e^+ e^- \to \eta \pi^+ \pi^-)$$

• For the hadronic contributions to the theoretical value of a_{μ} , experimental input from the measurement of the cross section $\sigma(e+e- \rightarrow hadrons)$ dominates.²

¹ D. Gómez Dumm and P. Roig; Phys. Rev. D 86, 076009 (2012) ² Waldi, R (BaBar Collaboration); PoS ICHEP2016 (2016) 682.

$\tau \rightarrow \eta \pi \pi^0 \nu$

- η mesons reconstructed from $\gamma\gamma$ (1-prong) **BR** $(\tau \rightarrow \eta\pi\pi^0\nu)$ = 1.39 x10⁻³
- Selection: tag + 1 charged + 4 or 5 γ
- Signal events generated: 1x10⁶.

Michel H. Villanueva

Cinvestav

$\tau \rightarrow \eta \pi \pi^0 \nu$ bkg events

BDT variables

- $\angle(\gamma,\gamma)_{\eta}$
- $P_t(\eta\pi\pi^0)$
- $\mathsf{P}_{\mathsf{t}}(\pi^0)$
- $\mathsf{P}_{\mathsf{t}}(\eta)$

- M_{miss}
- ∠(η,π)
- ∠(η,π⁰)

M_{miss}

∠(η, π)

∠(η, π[°])

Pt_n

Pt,

Pt_{ŋff}

∠(γ,γ)_n

-68

100

<(Y, y)

Correlation Matrix (background)

-56

100

-68

Pt_

100

Pţ,

100

-56

<(ŋ, x°)

-53

100

Pt

Michel H. Villanueva

22

Outlook

- All bkg sources should be included in the sensitivity analysis (two photon, $\tau \rightarrow \eta \pi \gamma \nu$, etc).
- Besides BDT and TMVA, we can test other MVA software packages and techniques (FANN, FastBDT, TensorFlow, etc).
- Once the MVA determines the optimum cuts, we will use RooFit to estimate efficiencies.
- BR measurement, invariant mass of $\eta \pi$, $\eta \pi \pi^0$ and form factors will be very important to disentangle models.
- The implementation of channels in TAUOLA, with the most recent decay models, is important to control the bkg.

Thank you

Backup

G - Parity

- G-parity is defined by $G = Ce^{i\pi I_2}$
- Is a good symmetry of the strong interactions $[H_{str}, I_i] = 0;$ $[I_i, I_j] = i\epsilon_{ijk}I_k$

Convenient to analyze process where the initial or final state contains only mesons

$$\begin{array}{ll} G|\pi\rangle = -|\pi\rangle \\ G|\eta\rangle = +|\eta\rangle \\ G|\rho\rangle = +|\rho\rangle & \rho \to \pi\pi, 4\pi; \quad \not \to 3\pi, \eta\pi \\ G|\omega\rangle = -|\omega\rangle & \omega \to 3\pi, \rho\pi; \quad \not \to 2\pi, 4\pi \\ G|a_0\rangle = -|a_0\rangle & a_0 \to \eta\pi; \quad \not \to 2\pi \end{array}$$

• However, G-Parity is not exact. $[H_{tot}, I_i] \neq 0;$

• Some recent theoretical predictions

Ref	BR _V (x10 ⁵)	BR _S (x10 ⁵)	BR _{V+S} (x10 ⁵)	Model
[8]	0.36	1.0	1.36	MDM, 1 resonance
[9]	[0.2, 0.6]	[0.2, 2.3]	[0.4, 2.9]	MDM, 1 and 2 resonances
[10]	0.44	0.04	0.48	Nambu-Jona-Lasinio
[11]	0.13	0.20	0.33	Analiticity, Unitarity
[12]	0.26	1.41	1.67	3 coupled channels

- [8] S. Nussinov + A. Soffer, PRD78, (2008)
- [9] N. Paver + Riazuddin, PRD82, (2010)
- [10] M. Volkov D. Kostunin, PRD82, (2012)
- [11] S. Descotes-Genon+B. Moussallam, EJPC74, (2014)
- [12] R. Escribano, S. Gonzalez, P. Roig; Phys.Rev. D94 (2016) no.3, 034008

A new bkg source¹

•
$$\tau^- \to \eta \pi^- \nu_\tau \gamma$$

 BR ~ 10⁻⁵! (Not suppressed by G-parity, unlike the channel without photon.)

(a) Normalized spectra in the invariant mass of the $\eta\pi^-$ system are plotted for some characteristic points in fig. 14(a).

Figure 16: Normalized spectra of the $\tau^- \to \eta \pi^- \nu_\tau \gamma$ decays according to $R\chi L$.

• Veto of photons with $E\gamma > 100 \text{ MeV}$ should get rid of this background.

¹A. Guevara, G. López-Castro, P. Roig (2016). arXiv:1612.03291. To be published in PRD.

Cinvestav

Michel H. Villanueva

TinyDST

- For tau physics study, roughly TinyDST (tdst) is designed¹.
- Events having:
 - Less than 6 charged tracks with |dr|<0.5 cm, |dz|<3.0 cm, pt>0.1 GeV/c and -0.8660<cos θ<0.9535.
 - Less than 10 photons with E_{γ} >50 MeV and -0.8660<cos θ <0.9535.
- Thrust vector information contained.
- To squeeze the size, one lepton is required.
 - In SM precise measurement, to avoid qq BG, usually, leptonic decay is required for tag tau (tau with non-signal decay).
- 50MBytes for 200k events. (In original mdst, 50MBytes for 20k events.)

