

Search for Dark Matter in the beam-dump of a proton beam with MiniBooNE

Alexis A. Aguilar-Arévalo (ICN-UNAM) for the MiniBooNE-DM collaboration

XXXI Reunión Anual, División de Partículas y Campos, SMF Departamento de Física, CINVESTAV, Zacatenco, Ciudad de México, 24-26 de mayo, 2017

Outline

Motivation: Sub-GeV dark matter

MiniBooNE detector

Dark Matter search in beam-dump mode

Results

Lessons learned and future perspectives

Conclusions

Outline

Motivation: Sub-GeV dark matter

MiniBooNE detector

Dark Matter search in beam-dump mode

Results

Lessons learned and future perspectives

Conclusions

Motivation

- Sub-GeV mass range significantly less explored, but theoretically well motivated.
- Accessible, among others, with accelerator beam dump experiments.

Sub-GeV Dark Matter

- Evidence of Dark Matter motivates extending the Standard Model to include a "Dark Sector" → new fields with no SM gauge charges.
- DM particles in the Dark Sector couple to the SM via a "mediator".
- Many possible ways to connect the Standard Model and the Dark Sector, constrained by SM symmetries (called *portals*):
 - Vector portal \rightarrow vector mediator V^{μ}
 - Higgs portal \rightarrow scalar mediator ϕ
 - Neutrino portal \rightarrow fermion mediator N

3 *renormalizable* portals to the SM

• Vector portal models \rightarrow most viable for thermal, sub-GeV DM.

Dark Sectors 2016 Workshop: arXiv:1608.08632 [hep-ph].

Minimal kinetically mixed dark photon

• A minimal extension to the Standard Model:

- U(1)_D gauge boson ("dark photon") increases the DM annihilation cross section to give the correct relic density.
- Mediator with mass $O(10-10^3 \text{ MeV})$ could resolve the $(g-2)_{\mu}$ anomaly.

P. Fayet, Phys. Rev. D 75, 115017 (2007) M. Pospelov, Phys. Rev. D 80, 095002 (2009)

Alexis A. Aguilar-Arévalo (ICN-UNAM)

RADPYC 2017

24-26 Mayo 2017

Dark Matter Beam and Detection

• Production in high-energy collisions and detection by scattering.

 \square Event rate: ~ $\epsilon^4 \alpha_D$, for $m_V > 2m_\gamma$ (invisible decay of V).

B. Batell et al., *Phys. Rev. Lett.* **113** (2014) 171802. arXiv:1406.2698 [hep-ph]. P. deNiverville et al., *Phys. Rev.* **D84** (2011) 075020. arXiv:1107.4580 [hep-ph].

Alexis A. Aguilar-Arévalo (ICN-UNAM)

24-26 Mayo 2017

Why a beam dump experiment?

- Neutrino interactions are a background to such DM search.
- A beam dump produces significantly fewer neutrinos.

Neutrino production target (thin)

Charged mesons escape and produce v's

Beam dump (thick target)

- π^0 decay quickly into dark sector
- π⁺ decay with longer lifetime into high-energy neutrinos
- π^0 decay quickly into dark sector
- π⁺ absorbed before decay to v's (or DAR to low-energy v's)

Outline

Motivation: Sub-GeV dark matter

MiniBooNE detector

Dark Matter search in beam-dump mode

Results

Lessons learned and future perspectives

Conclusions

The MiniBooNE detector

Neutral-Current Nucleon NCE

- 800 tons of mineral oil (CH_2)
- Cherenkov detector with some scintillation from trace fluors
- 1280 inner and 240 veto PMTs
- Ran for >10 yr in v and \overline{v} modes and has published 27 papers.

The detector is well understood

MiniBooNE before "-DM"

See our website for a full list of publications. http://www-boone.fnal.gov/

Alexis A. Aguilar-Arévalo (ICN-UNAM)

Booster Neutrino Beam (BNB)

Alexis A. Aguilar-Arévalo (ICN-UNAM)

RADPYC 2017

24-26 Mayo 2017

CINVESTAV, Cd. de México

CCQE and NCE events

A. A. Aguilar-Arevalo et al., Phys. Rev. D81, 092005 (2010), arXiv:1002.2680 [hep-ex]

 Absolute and relative (to CCQE) crosssections.

A. A. Aguilar-Arevalo et al., Phys. Rev. D82, 092005 (2010), arXiv:1007.4730 [hep-ex]

Outline

Motivation: Sub-GeV dark matter

MiniBooNE detector

Dark Matter search in beam-dump mode

Results

Lessons learned and future perspectives

Conclusions

Beam Dump (Off Target) mode

- Reduce v production by steering beam to miss the target.
- Beam impacts on the beam dump
- Charged mesons absorbed in the steel beam dump before decaying → reduces the neutrino flux.

MiniBooNE target assembly

Alexis A. Aguilar-Arévalo (ICN-UNAM)

RADPYC 2017

24-26 Mayo 2017

Neutrino flux reduction

Off-Target flux: $\Phi_{off} = (1.19 \pm 1.1) \times 10^{-11} v / (POT \cdot cm^2), \quad 0.2 < E_v < 3 \text{ GeV}$

Comp. to v-Mode: - F

- Flux reduced by factor of ~30

- Event rate reduced by factor of ~50.

Alexis A. Aguilar-Arévalo (ICN-UNAM)

RADPYC 2017

24-26 Mayo 2017

Off Target beam stability

Alexis A. Aguilar-Arévalo (ICN-UNAM)

RADPYC 2017

24-26 Mayo 2017

N-DM event selection

Single p/n track with a few hundred MeV kinetic energy.

- 1 Track (single recoil) in beam timing window
- Event is centralized contained
 - No activity in the veto
 - Within tank fiducial volume
- Signal above visible energy and number of hits threshold.
- PID: Nucleon or electron

Based on the \overline{v} NCE cross section analysis.

A.A. Aguilar-Arevalo et al., *Phys. Rev.* **D91** (2015) 012004. arXiv:1309.7257 [hep-ex].

Dark Matter generator

- Used BdNMC to generate T_N^{true} event lists.
- Produced event lists $m_V \in [0.01, 0.1]$ GeV and $m_\chi \in [0.001, m_V/2)$ GeV
- Included π^0/η -decay and Bremsstrahlung channels.

P. deNiverville et al., (2008), arXiv:1609.01770 [hep-ph]

• π^0/η event lists from beam MC used to generate π^0 and η distributions.

Fit strategy

- Use 4 distributions:
- $CCQE_v$ neutrino-Mode
- CCQE_{Off} BDump-Mode
- NCE_v neutrino-Mode
- NCE_{Off} BDump-Mode (signal)
- CC ratios help reduce flux uncertainties.
- NC ratios help reduce neutrino cross section uncertainties.

Simultaneous Fit

Alexis A. Aguilar-Arévalo (ICN-UNAM)

RADPYC 2017

24-26 Mayo 2017

CINVESTAV, Cd. de México

Outline

Motivation: Sub-GeV dark matter

MiniBooNE detector

Dark Matter search in beam-dump mode

Results

Lessons learned and future perspectives

Conclusions

NCE_{Off} distribution

Alexis A. Aguilar-Arévalo (ICN-UNAM)

RADPYC 2017

90% CL limits

• Slice to compare to other experiments.

Alexis A. Aguilar-Arévalo (ICN-UNAM)

RADPYC 2017

Results

- In most of par. space: exclude model solutions to the $(g-2)_{\mu}$ anomaly
- in some of par. space: exclude model solutions matching the relic density.
- Overall: new regions of parameter space excluded.
- Cover most of the gap between 1 MeV < m_{γ} < direct detection.

Outline

Motivation: Sub-GeV dark matter

MiniBooNE detector

Dark Matter search in beam-dump mode

Results

Lessons learned and future perspectives

Conclusions

Lessons

- Understand the Backgrounds
 - Used a decade worth of data to reduce systematic errors.
 - Large detector w/veto \rightarrow reduce events from dirt around it.
 - Beam-unrelated backgrounds measured with 12 (2) Hz random trigger in off-target (v) Mode.
- Nuclear physics must be considered
 - Final sensitivity affected by uncertainties from nuclear effects (eg. binding energy, Pauli blocking).
 - Honest sensitivity estimate must include a decent nuclear model.
- Correlations can be very helpful
 - Include sideband analyses (samples may be correlated)
 - Correlations \rightarrow constrained systematic uncertainties in signal sample.

Future MB analyses

- Proton beam is comprised of 81 ns RF pulses (buckets)
- Massive dark matter will propagate sub-luminal
- Characteristic intra-bunch timing improve "high" mass dark matter sensitivity

Future MB analyses

Electron-DM Elastic

- MiniBooNE searched for $\nu_{\mu} \rightarrow \nu_{e}$ oscillations.
- Excellent electron tracker.
- $v_e + e \rightarrow v_e + e$ is dominant background \rightarrow clean SM prediction.
- Connected to low-energy excess from oscillation search.

Δ Resonance (π^{0})

- Neutral pion π^0 decays to 2 energetic photons.
- Main background to v_e oscillation \rightarrow well studied.
- Hard to fake with beamunrelated backgrounds.
- Estimate 1-10 total "strobe" events.

Future: a dedicated beam dump

- Off-tgt mode v's also from:
 - proton beam halo "scraping" against material
 - Proton interactions with air in the decay pipe
- Idea: *
 - remove BNB target and focusing horn.
 - Replace with dedicated steel dump at end of beam pipe.

* A non-trivial upgrade to the BNB → convert/enhance the Short Baseline Neutrino (SBN) program to a sub-GeV DM search program?

(see talk by R. Van de Water @ Cosmic Visions Workshop 2017)

Short Baseline Neutrino (SBN) program

- Motivated by LSND/MiniBooNE to study v oscillations. To begin operations in 2018.
- Short Baseline Near Detector (**SBND**) \rightarrow Ideal for beam dump sub-GeV DM search.

Alexis A. Aguilar-Arévalo (ICN-UNAM)

DM search with SBND

e & π^0 channel

- SBDN closer to target ⇒ increased signal rate (~x9).
- Signal/Background estimates robust, learned from MB N-DM search.
- π^0 (e) good at high (low) masses complementary to each other.
- Improve on current MiniBooNE limit by an order of magnitude.
- Require improved beam dump

Outline

Motivation: Sub-GeV dark matter

MiniBooNE detector

Dark Matter search in beam-dump mode

Results

Lessons learned and future perspectives

Conclusions

Conclusions

- MiniBooNE collected data (1.86×10²⁰ POT) in beam-offtarget mode to search for sub-GeV dark matter.
- Beam-off-target suppresses neutrino backgrounds.
 Beam uncorrelated backgrounds dominant.
- First of its kind proton beam dump search with a large well characterized neutrino detector (dedicated collab).
- Nucleon-DM elastic scatter analysis is complete e-DM and inelastic π^0 channels are underway.
- Future opportunities (e.g. DM search with SBN) are being explored.

Thank you for your attention!

A.A. Aguilar-Arevalo et al., Phys. Rev. Lett. (2017), arXiv:1702.2688 [hep-ex].

Alexis A. Aguilar-Arévalo (ICN-UNAM)

RADPYC 2017

24-26 Mayo 2017

CINVESTAV, Cd. de México

Backups

Previous beam dump / Fixed Target experiments – Proton Beams

Experiment	Location	approx. Date	Amount of Beam (10 ²⁰ POT)	Beam Energy (GeV)	Target Mat.	Ref.
CHARM	CERN	1983	0.024	400	Cu	[16]
PS191	CERN	1984	0.086	19.2	Be	[17, 18]
E605	Fermilab	1986	4×10^{-7}	800	Cu	[19]
SINDRUM	SIN,PSI					
v-Cal I	IHEP Serpukhov	1989	0.0171	70	Fe	[20-22]
LSND	LANSCE	1994-1995 1996-1998	813 882	0.798	H20, Cu W,Cu	[23]
NOMAD	CERN	1996-1998	0.41	450	Be	[18, 24]
WASA	COSY	2010		0.550	LH2	[25]
HADES	GSI	2011	0.32pA*t	3.5	LH2,No,Ar+KCI	[26]
MiniBooNE	Fermilab	2003-2008 2005-2012 2013-2014	6. 27 11. 3 1. 86	8.9	Be Be Steel	[27] [28] [29]

Table by R.T. Thornton, Indiana University Nuclear Physics Seminar, Nov. 21, 2014

Alexis A. Aguilar-Arévalo (ICN-UNAM)

Future MB analyses

- Will exclude new parameter space in vector portal kinetic mixing theory.
- Produced Model Independent Fit (MIF) for use with other theories.
- MIF used to set CL in leptophobic theory (very significant exclusion).
- Timing analysis underway to improve sensitivity to heavier masses.
- Future MiniBooNE analysis is promising.

Leptophobic Dark Matter

- It is possible that dark matter couples dominantly to quarks.
- Many constraints are evaded proton beams have a significant advantage!
- Simplified model (based on local $U(1)_B$ baryon number)

$$\begin{aligned} \mathcal{L} &= i\bar{\chi}\gamma^{\mu}D_{\mu}\chi - m_{\chi}\bar{\chi}\chi - \frac{1}{4}(V_{B}^{\mu\nu})^{2} + \frac{1}{2}m_{V}^{2}(V_{B}^{\mu})^{2} + \frac{g_{B}}{3}V_{B}^{\mu}\sum_{i}\bar{q}_{i}\gamma_{\mu}q_{i} + \dots \\ D^{\mu} &= \partial^{\mu} - ig_{B}q_{B}V_{B}^{\mu} \end{aligned}$$

P. deNiverville et al., (2016), arXiv:1609.01770 [hep-ph], B. Batell et al., Phys. Rev.D90, 115014 (2014),arXiv:1405.7049 [hep-ph]

- 4 new parameters: $m_\chi, m_V, lpha_B, q_B$
- U(1)_B is "safe" preserves approximate symmetries of SM (CP, P, flavor)
- Gauge anomalies can be canceled by new states at the weak scale

BdNMC

[deNivervile, Chen, Pospelov, Ritz] https://github.com/pgdeniverville/BdNMC/releases

• Publicly available proton beam fixed target DM simulation tool developed by Patrick deNiverville (U. Victoria) and collaborators.

