$\tau \to \pi \eta^{(\prime)} \gamma \nu_{\tau}$ as background for SCC

Adolfo Guevara

in collaboration with G. López Castro and P. Roig

Departamento de Física Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav)

Published in Phys. Rev. D95 (2017) 054015

XXXI Annual Meeting DPyC-SMF

24th May 2017

• Trying to obtain new conservation laws, T.D. Lee and C.N. Yang introduced the operator

$$G = Ce^{i\pi I_2}$$

- For states with $N_B = 0$, $G = \pm 1$ and is the same for all components of an *I*-multiplet¹.
- Thus, hadronic currents with $\Delta S = \Delta C = \Delta B = 0$ will have a definite *G*-parity.

Cinvesta

ъ

• These currents can be devided into two classes

G	S	P	V	A
1^{st}	+1	-1	+1	-1
2^{nd}	-1	+1	-1	+1

- 2^{nd} class currents (SCC) have opposite *G*-parity to weak currents in SM.
- In QCD, *G*-parity is broken by *u*-*d* mass and electric charge differences.
- eg, $G(\eta \pi) = -1$, and $\mathcal{P}(\eta \pi) = +1 \Rightarrow$ a scalar 2^{nd} class current must generate the $\tau \to \pi \eta \nu_{\tau}$ decay.

- Therefore, isospin breaking currents are important background for genuine SCC.
- Search for SCC in β -decays is difficult due to the small momentum transfer and the many form factors implicated.
- However, search for these currents have been suggested² in semileptonic decays such as $\tau \to \pi \eta \nu_{\tau}$ (cleanest).
- Current experimental limits $\mathcal{B}_{\eta} < 10^{-4}$ and $\mathcal{B}_{\eta'} < 10^{-5}$ are close to *G*-parity breaking prediction.
- Belle-II may discover *G*-parity breaking so that we can characterize further its structure and disentangle New Physics contributions (See Michel Hernandez's talk).

 $^{^2\}mathrm{C.}$ Leroy and J. Pestieau, Phys. Lett. B72 (1978) 398 \rightarrow < \equiv \rightarrow

• Within the SM, $\tau \to \pi \eta \nu_{\tau}$ is suppressed due to a factor

$$\left(\left[\frac{m_{\pi^0}}{m_{\eta}} \cdot \frac{m_d - m_u}{m_s} \right]^2 \sim 10^{-5} \right).$$

- An important background for this process is $\tau \to \pi \eta \nu_{\tau} \gamma$ with γ escaping detection.
- γ does not have a definite I value \Rightarrow some contributions do not have the suppression factor.
- We study the radiative process, where we estimate this suppression to compete with the one from α_{EM} .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Main contributions to the amplitude

• We will try to find a photon energy E_{γ} cut to safely neglect this contribution in the search for SCC.

- Bremsstrahlung contributions will have both, the $\sim 10^{-5}$ factor and the α_{EM} suppression.
- Contributions involving the effective $W^* \pi \eta \gamma$ vertex will give the main contribution to the amplitude.

Cinvesta

Main contribution to the decay amplitude

• The main contribution can be expressed as

$$\mathcal{M} = \frac{eG_F V_{ud}^*}{\sqrt{2}} \epsilon^{*\mu} (V_{\mu\nu} - A_{\mu\nu}) L_{\tau}^{\nu}$$

• where the hadronic tensors are parametrized as

$$V_{\mu\nu} = \boldsymbol{v_1}(p \cdot \boldsymbol{k} g_{\mu\nu} - p_{\mu} \boldsymbol{k}_{\nu}) + \boldsymbol{v_2} (g_{\mu\nu} p_0 \cdot \boldsymbol{k} - p_{0\mu} \boldsymbol{k}_{\nu})$$
$$+ \boldsymbol{v_3}(p_{\mu} p_0 \cdot \boldsymbol{k} - p_{0\mu} p \cdot \boldsymbol{k}) p_{\nu} + \boldsymbol{v_4}(p_{\mu} p_0 \cdot \boldsymbol{k} - p_{0\mu} p \cdot \boldsymbol{k}) p_{0\nu}$$

$$A_{\mu\nu} = i\varepsilon_{\mu\nu\rho\sigma} \left(\mathbf{a_1} p_0^{\rho} \mathbf{k}^{\sigma} + \mathbf{a_2} \mathbf{k}^{\rho} W^{\sigma} \right) + i\varepsilon_{\mu\rho\sigma\tau} \mathbf{k}^{\rho} p^{\sigma} p_0^{\tau} \left(\mathbf{a_3} W_{\nu} + \mathbf{a_4} (p_0 + \mathbf{k})_{\nu} \right)$$

Cinvesta

ъ

・ロト ・四ト ・ヨト ・ヨト

Meson Dominance Model (MDM)

• We rely on MDM to estimate the order of magnitude of the branching fraction with the following contributions.

• Using MDM we estimated $\mathcal{B}(\tau \to \pi \eta \gamma \nu_{\tau}) \sim \mathcal{B}(\tau \to \pi \eta \nu_{\tau})$

(日) (四) (日) (日)

Resonance Chiral Theory $(R\chi T)$

• We then computed the branching ratio using $R\chi T$ and obtained contributions from diagrams with 0 and 1 meson resonance exchange.

2R Contributions

• and with two resonance exchange

linvesta

(日) (四) (日) (日)

• There is no *a priori* argument to neglect 2R exchange contributions, however we get that they are suppressed with respect to the 1R exchange contributions.

E_{γ} spectrum for $\tau \to \pi \eta \gamma \nu_{\tau}$

• E_{γ} spectrum³ for MDM (left) and R χ T (right).

Cinvestav

 $^3\mathrm{AG},$ G. López Castro y P. Roig, Phys. Rev. D
95 (2017) 054015 $_{\odot}$.

Results

• We compare our results to the non-radiative process⁴

Bkg	BR (no cuts)	BR $(E_{\gamma}^{\rm cut} > 100 \text{ MeV})$	BR SCC signal
η	$(3.0 \pm 0.6) \cdot 10^{-5}$	$(1.2 \pm 0.6) \cdot 10^{-6}$	$\sim 1.7 \cdot 10^{-5}$
η'	$(2.2 \pm 0.4) \cdot 10^{-6}$	$(2\pm 1)\cdot 10^{-7}$	$[10^{-7}, 10^{-6}]$

- The radiative process can be suppressed by cutting photons with energies $E_{\gamma} > 100$ MeV for η .
- Due to the large uncertainty in $BR(\tau \to \pi \eta' \nu_{\tau})$ we cannot say the same for the η' channel

Cinvesta

Conclusions

- We were able to suppress the background due to the radiative process by imposing a cut on E_{γ} for the η channel.
- A better analysis of the non-radiative process must be done to give a conclusion for the η' .
- We found that neglecting the two resonance exchange contribution is a very good approximation.
- This will greatly simplify the Monte Carlo code for generating the form factors and reduce the computation time.

 \mathbb{C} investa

イロト 不得 トイヨト イヨト 三日

Back up

- Los acoplamientos de MDM se obtienen haciendo los siguientes ajustes.
- Usamos el ancho

$$\Gamma(\tau^- \to \nu_\tau X^-) = \frac{G_F^2 |V_{ud}|^2}{8\pi M_\tau^3} \frac{M_X^2}{g_X^2} \left(M_\tau^2 - M_X^2\right)^2 \left(M_\tau^2 + 2M_X^2\right)$$

- para encontrar g_{a_1} , tomando (PDG) $BR(\tau^- \to a_1^- \nu_\tau) = 0.1861 \pm 0.0013$
- Para g_{ρ} se toma el ancho

$$\Gamma(\rho^0 \to e^+ e^-) = \frac{4\pi}{3} \left(\frac{\alpha}{g_{\rho}}\right)^2 \left(1 + \frac{2m_{\ell}^2}{M_V^2}\right) \sqrt{M_V^2 - 4m_{\ell}^2}.$$

Cinvesta

32

・日本 ・ 西本 ・ 日本 ・ 日本

• El acoplamiento Vector-fotón-pseudoescalar, $g_{V\gamma P}$, se obtiene con los anchos medidos (PDG) $\Gamma(\rho/\omega \rightarrow \pi/\eta \gamma)$ y de la expresión para ancho

$$\Gamma(V \to P\gamma) = \frac{|g_{VP\gamma}|^2}{96\pi M_V^3} (M_V^2 - M_P^2)^3$$

• El acoplamiento $g_{\rho a_1\pi}$ se obtiene del ancho (λ es la función de Källén)

$$\begin{split} \Gamma(a_1 \to \rho \pi) \, = \, \frac{|g_{\rho a_1 \pi}|^2}{96 \pi M_{a_1}^3} \left[\lambda(M_{a_1}^2, M_{\rho}^2, m_{\pi}^2) + 6M_{\rho}^2 M_{a_1}^2 \right] \times \\ \lambda^{1/2}(M_{a_1}^2, M_{\rho}^2, m_{\pi}^2) \, . \end{split}$$
• con⁵ $BR(a_1 \to \rho \pi) = 61.5 \,\%$ y $\Gamma_{a_1} = (475 \pm 175)$ MeV

⁵D. M. Asner *et al.* [CLEO Collaboration], Phys. Rev. D**61** (2000) 012002.

э

• Para los acoplos de a_0 se usa

$$\Gamma(a_0 \to \gamma \gamma) = \frac{|g_{a_0 \gamma \gamma}|^2}{32\pi} M_{a_0}^3,$$

$$\Gamma(a_0 \to \pi \eta) = \frac{|g_{a_0 \pi \eta}|^2}{16\pi M_{a_0}^3} \lambda^{1/2}(M_{a_0}^2, m_\eta^2, m_\pi^2) \,,$$

• Donde se reporta (PDG)

$$\Gamma(a_0 \to \gamma \gamma) \times \frac{\Gamma(a_0 \to \pi \eta)}{\Gamma_{a_0}} = (0.21^{+0.08}_{-0.04}) \,\mathrm{keV} \,.$$

• y usando
6 $\Gamma_{a_0} = (75.6 \pm 1.6^{+17.4}_{-10.0}) \text{ MeV}$

⁶S. Uehara *et al.* [Belle Collaboration], Phys. Rev. D80 (2009) 032001 \ge

Cinvestav

• Las demás constantes se obtienen de simetrías del modelo⁷

⁷Alaín Flores Tlalpa, PhD Thesis, *Modelo de dominancia de mesones* para decaimientos semileptónicos de sabores pesados. (2008) Cinvestav, México, DF

æ

MDM

• Las reglas para los diferentes vértices vienen dadas por

$$\begin{split} V^{\prime\mu}(r) &\to V^{\alpha}(s)P(t) : ig_{V^{\prime}VP} \epsilon^{\mu\alpha\rho\sigma} s_{\rho} t_{\sigma} , \\ V^{\mu}(r) &\to \gamma^{\alpha}(s)P(t) : ig_{VP\gamma} \epsilon^{\mu\alpha\rho\sigma} s_{\rho} t_{\sigma} , \\ A^{\mu}(r) &\to V^{\alpha}(s)P(t) : ig_{VAP}(r \cdot sg^{\mu\alpha} - r^{\alpha}s^{\mu}) , \\ V^{\mu}(r) &\to \gamma^{\alpha}(s)S(t) : ig_{VS\gamma}(r \cdot sg^{\mu\alpha} - r^{\alpha}s^{\mu}) , \\ S(r) &\to P(s)P^{\prime}(t) : ig_{SPP^{\prime}} . \end{split}$$

Cinvestav

- 3

・ロト ・四ト ・ヨト ・ヨト

• Los acoplamientos se determinan de procesos independientes.

 $BR(\tau \to \pi \eta \gamma \nu_{\tau})$

Figura: Fracción de decaimiento con todas las contribuciones (izq.) y sin intercambio de dos resonancias.

Cinvestav

э

(日)、

$BR(\tau \to \pi \eta \gamma \nu_{\tau}) \qquad E_{\gamma} < 100 \text{ MeV}$

• BR calculado con $R\chi T$ con corte en $E_{\gamma} = 100 \text{ MeV}$

Cinvestav

 $BR(\tau \to \pi \eta' \gamma \nu_{\tau})$

Figura: Fracción de decaimiento con todas las contribuciones (izq.) y sin intercambio de dos resonancias.

Cinvestav

э

(日)、

$BR(\tau \to \pi \eta' \gamma \nu_{\tau}) \qquad E_{\gamma} < 100 \text{ MeV}$

• BR calculado con $R\chi T$ con corte en $E_{\gamma} = 100 \text{ MeV}$

Bremsstrahlung contribution to $\tau \to \pi \eta^{(\prime)} \gamma \nu_{\tau}$

Cinvestav

・ロト ・個ト ・モト ・モト

Figura: Contribution for the $\tau \to \pi \eta \gamma \nu_{\tau}$ (left) and for $\tau \to \pi \eta' \gamma \nu_{\tau}$ (right)

Spectra for $\tau \to \pi \eta \gamma \nu_{\tau}$ in MDM

Figura: Invariant mass spectrum (right) and photon energy spectrum (left)

Cinvestav

・ロト ・個ト ・モト ・モト

Spectra for $\tau \to \pi \eta' \gamma \nu_{\tau}$ in MDM

Figura: Invariant mass spectrum (right) and photon energy spectrum (left)

Spectra for $\tau \to \pi \eta \gamma \nu_{\tau}$ in $R\chi T$

Figura: Invariant mass spectrum (right) and photon energy spectrum (left)

Spectra for $\tau \to \pi \eta' \gamma \nu_{\tau}$ in $R\chi T$

Figura: Invariant mass spectrum (right) and photon energy spectrum (left)

