

Studies on mass sensitive parameters and monitoring of the operation of the surface detector with data of the Pierre Auger Observtory

> Karen Salomé CaballeroMora UNACH

XXXI Reunión Anual de la División de Partículas y Campos de la SMF 24 - 16 May 2017 CINVESTAV-ZACATENCO Mexico City

Outlook

- Mass composition and New Physics
- The Pierre Auger Observatory
 - Mass composition with Risetime $t_{1/2}$
 - A new parameter based on t_{1/2}: Rchis
 - Status of the study
 - Monitoring SD with direct light on PMTs in time
 - Direct light
 - Characteristic line

Mass Composition and new Physics

- Needed to understand: CR Origin, acceleration and propagation mechanisms
- Feedback with elementary particles interactions at high energies

Needed to understand: CR Origin, acceleration and propagation mechanisms

Feedback with elementary particles interactions at high energies

Mass Composition of UHECR

17.0

17.5

18.0

18.5

 $\log_{10}(\mathbf{E}/\mathbf{eV})$

19.0

19.5

20.0

17.0

The Pierre Auger Observatory

GPS antenna

12 tons of water

solar panel

SD

electronics

three 9 inch PMTs

Karen S. Caballero Mora UNACH karen.scm@gmail.com

1660 surface detector (SD) stations

Mass composition sensitive parameters in Auger

- Radius of curvature (Rc) 0
- Muon fraction (average values based on simulations or event by 0 event) dE/dX [PeV/(g/cm²)] data (E= 61.9 EeV, X_{max}= 770.0 [g/cm²]) 160
- Muon/electron ratio
- Muon production depth
- Xmax

- Risetime, t_{1/2} (Asymmetry parameter, Deltas, fluctuations) 0
- Multivariable analysis (mean based) 0

The SD mass composition sensitive parameter $t_{1/2}$

The SD mass composition sensitive parameter $t_{1/2}$

Particles arriving at ground

Karen S. Caballero Mora UNACH karen.scm@gmail.com

t1/2 as mass sensitive parameter 9/20

Study of risetime as a function of energy, zenith angle and distance to the shower core Hernán Castellanos Valdés

Goal:

 To optimize the characteristic distance to the shower core to consider the risetime for each event in order to decrease fluctuations

Future:

- To explore the new risetime as a mass composition sensitive parameter and compare it with results obtained for risetime at 1000 m
- To explore other relations as X_{max} vs $\triangle Core$

Study of rise time as a function of energy, zenith angle and distance to the shower core Hernán Castellanos Valdés

Method:

We analyzed events with angles around 30° - 39°, 40° - 49° and 50° - 60°, for a fixed energy. We consider retime as a function of the distance to the shower core. Fits of the following forms are considered:

$$f(x) = 40 + ax + bx^{2}$$

$$f(x) = 10 + (a^{2} + bx^{2})^{1/2} - a$$

$$f(x) = 40 + ax$$

The distance where the fits intersect is the characteristic distance of the event to be considered

Some examples

Zenith angle:36.56° Energy: 2.19x10¹⁹ eV Intersection at:765 m

Energy: 1.62x10¹⁹ eV Intersection at:1095 m 400 400 40 ≤ -- Θ < 50 400 250 200 50 150 50 100 100 100 1200 1300 1400 1500 Distance to Shower Core (m)

Zenith angle:44.77° Energy: 1.37x10¹⁹ eV Intersection at:910 m

There is a different intersection distance of the fitted functions of risetime, for events with different zenith angles. That distance might be used for performing more accurated studies on mass composition.

Mean behaviour for events 2004-2015

Karen S. Caballero Mora UNACH <u>karen.scm@gmail.com</u>

Rchis (m)

< Rchis >= 843 m

Mean behaviour for events 2004-2015

14/20

Next short term steps

- To use the linear fit to obtain R_{chis} for one event, given θ
- Once having Rchis, to obtain the value of t_{1/2} for such distance, i.e. t_{1/2}(Rchis)
- To compare $t_{1/2}(R_{chis})$ with $t_{1/2}(1000)$ to check if the spread of $t_{1/2}(R_{chis})$ is smaller than for $t_{1/2}(1000)$. If it is true, then $t_{1/2}(R_{chis})$ can be used for performing mass composition sensitive studies with simulations.
- A dependence with the energy will be also explored

Direct light in the SD and their change in time Pedro Valencia Esquipula

Goal:

- To observe the effects of direct light in the tanks of the SD, and their evolution in time.
- The change in time could provide information on the physical state of each tank.
- Such information can be also used for studying possible systematic effects in the measurements made by the SD
- To quantify effects of the PMT's aging

Direct light in the SD and their change in time

 $A\sin(\frac{\pi(x-k)}{180})+b$

Amplitud (A) as a function of zenith angle We consider three ranges of zenith angle with the same solid angle: 0°-34°, 34°-48°, 48°-60°

Short term future

- The same kind of study will be performed for 9 time intervals between 2004 and 2013, a characteristic line will be obtained for every interval.
- The possible change in the slopes of characteristic lines will be used to estimate the aging of the PMTs
- The signal will be explored in order to find some change in time related to the PMT's aging

Thank you!

XXXI Reunión Anual de la División de Partículas y Campos de la SMF

24-26 May 2017 Cinvestav-Zacatenco Mexico/General timezone

