Introduction	Electromagnetic decays	Magnetic moments	Results 00000	Conclusion	Tables	Appendix

Contribution of the sea quark pairs to the electromagnetic decay of S-wave baryons problem

Gustavo Hazel Guerrero Navarro

Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México

May 26, 2017 RADPyC 2017, Cinvestav IPN, Ciudad de México

Introduction 000000	Electromagnetic decays	Magnetic moments	Results 00000	Conclusion	Tables	Appendix
Índice						

1 Introduction

- Motivation
- Constituent Quark Model
- Unquenched Quark Model
- 2 Electromagnetic decays
 - Valence and sea contribution

3 Magnetic moments

- Experimental information for CQM mm
- Experimental information for UQM mm

4 Results

- Transition magnetic moments
- Electromagnetic decays

5 Conclusion

6 Tables

7 Appendix

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix
● 0 0000						
Motivation						
Mativati	~~					
wouvau	JH					

omagnetic decay wi	dhts		
Transition (keV)	CQM	Exp	Reference
$\Gamma_{\Delta^+ \to p\gamma}$	399	660±60	PDG (2014)
$\Gamma_{\Sigma^{*+}\to\Sigma^{+}\gamma}$	110	250±56	CLAS, PRD 85 052004 (2012)
$\Gamma_{\Sigma^{*0}\to\Lambda^0\gamma}$	258	445±80	CLAS, PRD 83 072004(2011)

Ε

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix
00000						
Motivation						

Is there important differences between the CQM predictions and the recently collected experimental data for this baryon decay widths.

EM decay widths

$$\Gamma(B_{10} \to B_8 \gamma)_{exp} \approx 2\Gamma(B_{10} \to B_8 \gamma)_{CQM}$$

CQM under predict these values (we can't understand the experiment in the CQM frame)

We can study this in any quark model using the following relation

$$\Gamma(B_{10} \rightarrow B_8 \gamma) = 2_{pol} 2\pi \left| \langle \Psi_{A_8} \gamma | \hat{H}_{int} | \Psi_{A_{10}} \rangle \right|^2 4\pi \frac{E_{A_8}}{m_{A_{10}}} p_\gamma^2.$$

Model dependent?

The quark model dependece of this expression lie in specifying the baryon states (p. ej. $|\Psi_A\rangle_{CQM}$, $|\Psi_A\rangle_{UQM}$, ...)

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix	
000000							
Constituent Quark	Model						
Constituent Querk Medel							

Constituent Quark Model

$$\Psi\rangle_{total} = |\psi_r\rangle_{orb} \otimes |\phi\rangle_{flavor} \otimes |\chi\rangle_{spin} \otimes |\psi_c\rangle_{color}.$$

Baryons $(q^3) \rightarrow qqq$ Mesons $\rightarrow q\bar{q}$.

The interesed transitions are between the S-wave decuplet baryons and the S-wave octet baryons.

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix
000000						
Unquenched Quarl	k Model					

Unquenched Quark Model

Exotic degrees of freedom

-Quark-Antiquark sea pairs : Meson Cloud Model (Speth & Weise, 1998). Chiral Quark Model (Eichten et al, 1992). Unquenched Quark Model (Geiger & Isgur, 1997), (Törnqvist & Zenczykowski, 1984) (Bijker & Santopinto, 2009). -Higher Fock states included in the wave function.

$$\psi = \mathcal{N}\left[\psi(q^3) + \alpha\,\psi(q^3 - q\bar{q})\right]$$

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix
000000						
Unquenched Quark	Model					

$$|\psi_A\rangle = \mathcal{N}_A \left[|A\rangle + \sum_{BClJ} \int d\vec{K} k^2 dk |BC\vec{K}klJ\rangle \frac{\langle BC\vec{K}klJ|T^{\dagger}|A\rangle}{m_A - E_B(k) - E_C(k)} \right]$$

$$\begin{aligned} T^{\dagger} &= T^{\dagger}({}^{3}P_{0}) \\ &= -3\sum_{ij} \int d\vec{p}_{i}d\vec{p}_{j}\delta(\vec{p}_{i}+\vec{p}_{j})C_{ij}F_{ij}V(\vec{p}_{i}-\vec{p}_{j})[\chi_{ij}\times\mathcal{Y}_{1}(\vec{p}_{i}-\vec{p}_{j})]^{(0)}b^{\dagger}_{i}(\vec{p}_{i})d^{\dagger}_{j}(\vec{p}_{j}). \end{aligned}$$

This is the quark-pair creation operator of the ${}^{3}P_{0}$ model which considers the quantum number of vacuum (Micu, 1969). $V(\vec{p}_{i} - \vec{p}_{j}) = \gamma e^{-r_{q}^{2}(\vec{p}_{i} - \vec{p}_{j})^{2}/6}$, where γ correspond to an adimensional coupling constant between the $|A\rangle$ and intermediate states $\langle BC \rangle$. It can be determined from the asymmetry flavor in the proton.

It's considered baryons $J^P=\frac{1}{2}^+,\frac{3}{2}^+$ and pseudoscalar mesons $J^P=0^-.$ For example

$$\begin{aligned} |\Psi_{\Delta^{++}}\rangle &= \mathcal{N}_{\Delta} \left[\left| \Delta^{++} \right\rangle + a_{\Delta \to N\pi} \left| p\pi \right\rangle \right. \\ &+ a_{\Delta \to \Sigma K} \left| \Sigma K \right\rangle + a_{\Delta \to \Delta \pi} \left| \Delta \pi \right\rangle \\ &+ a_{\Delta \to \Delta \eta} \left| \Delta \eta \right\rangle + a_{\Delta \to \Delta \eta'} \left| \Delta \eta' \right\rangle \\ &+ a_{\Delta \to \Sigma^* K} \left| \Sigma^* K \right\rangle \right] \end{aligned}$$

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix
000000						
Unquenched Quark N	lodel					

CQM can't explain this

Gottfried sum rule

$$S_G = \int_0^1 dx \frac{F_{2p}(x) - F_{2n}(x)}{x} = \frac{1}{3} - \frac{2}{3} \int_0^1 dx [\bar{d}(x) - \bar{u}(x)]$$

the non-nule asymmetric contribution of the sea quarks in the proton

 $S_G = 0.255 \pm 0.008,$

i.e., $\Delta P = \int_0^1 dx [\bar{d}(x) - \bar{u}(x)] = N(\bar{d}) - N(\bar{u}) = 0.118 \pm 0.012$ (Fermilab E866 Drell-Yan experiment)

Flavor asymmetry

 $N(\bar{d}) > N(\bar{u})$

There is an excess of \overline{d} than \overline{u} into the proton.

We need to study another quarks model that can consider new degrees of freedom (extension)-> Higher Fock components UQM can explain it.

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

Electromagnetic decay of S-wave baryons

$$\begin{split} \Gamma_{i \to f} &= \frac{d(probability)}{d(time)} = 2\pi \left| \langle f | \hat{H}_{int} | i \rangle \right|^2 \rho_f, \\ \hat{H}_{int} &= -\int d^3x \hat{j}^{\mu}(\vec{x}) \hat{A}_{\mu}(\vec{x},t) \end{split}$$

where

$$\hat{j}^{\mu}(\vec{x}) = \sum_{q} \hat{\bar{q}}(\vec{x}) Q_{q} \gamma^{\mu} \hat{q}(\vec{x})$$

and

$$\hat{q}(\vec{x}) = \sum_{r=1}^{2} \int \frac{d^3p}{(2\pi)^{3/2}} \sqrt{\frac{m}{\varepsilon(\vec{p})}} \left(\hat{b}_r(\vec{p}) e^{-i\vec{p}\cdot\vec{x}} u_r(\vec{p}) + (-1)^{r+1} \hat{d}_r^{\dagger}(\vec{p}) e^{i\vec{p}\cdot\vec{x}} v_r(\vec{p}) \right),$$

then

$$\begin{split} \hat{j}^{\mu}(\vec{x}) &= \hat{j}_{1}^{\mu}(\vec{x}) + \hat{j}_{2}^{\mu}(\vec{x}) + \hat{j}_{3}^{\mu}(\vec{x}) + \hat{j}_{4}^{\mu}(\vec{x}) & \qquad \hat{j}_{1}^{\mu}(\vec{x}) \sim & \hat{b}_{r}^{\dagger}\hat{b}_{s} \to \text{quark transition} \\ \hat{j}_{2}^{\mu}(\vec{x}) \sim & \hat{d}_{r}\hat{b}_{s} \to \text{pair anihilation } q\bar{q} \\ \hat{j}_{3}^{\mu}(\vec{x}) \sim & \hat{b}_{r}^{\dagger}\hat{d}_{s}^{\dagger} \to \text{pair creation } q\bar{q} \\ \hat{j}_{4}^{\mu}(\vec{x}) \sim & \hat{d}_{r}\hat{d}_{s}^{\dagger} \to \text{antiquark transition} \end{split}$$

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

In consecuence

$$\hat{H}_{int} = \hat{H}_{int}^{1} + \hat{H}_{int}^{2} + \hat{H}_{int}^{3} + \hat{H}_{int}^{4}$$

$$\begin{split} \Gamma_{A \to A'\gamma} &= 2_{pol} 2\pi \left| \langle \Psi_{A'} \gamma | \hat{H}_{int} | \Psi_A \rangle \right|^2 \rho_f \\ &= 4\pi \left| \langle \Psi_{A'} \gamma | \hat{H}_{int}^1 | \Psi_A \rangle + \langle \Psi_{A'} \gamma | \hat{H}_{int}^2 | \Psi_A \rangle \right. \\ &+ \left. \langle \Psi_{A'} \gamma | \hat{H}_{int}^3 | \Psi_A \rangle + \left. \langle \Psi_{A'} \gamma | \hat{H}_{int}^4 | \Psi_A \rangle \right|^2 \rho_f \end{split}$$

In the particular CQM frame $\Gamma_{A\to A'\gamma}=4\pi\left|\langle A'\gamma|\hat{H}^1_{int}|A\rangle\right|^2\rho_f$

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix
	•					
Valence and sea cor	ntribution					
\hat{H}_{int}^1 cont	ribution					

$$\langle \Psi_{A'}, \gamma | \hat{H}^1_{int} | \Psi_A \rangle = i \sqrt{\frac{2\pi}{p_{\gamma} V}} \langle \Psi_{A'} | \vec{\mu}_S | \Psi_A \rangle \times \vec{p}_{\gamma} \cdot \vec{\epsilon}^{*\beta}.$$

CQM frame

UQM frame

$$\Gamma^1_{A\to A'\gamma} = \frac{\alpha E_{A'} p_\gamma^3}{2m_A m_N^2} \mu_S^2(A/A') \qquad \qquad \Gamma^1_{A\to A'\gamma} = \frac{\alpha E_{A'} p_\gamma^3}{2m_A m_N^2} \mu_S^2(\Psi_A/\Psi_{A'})$$

$$\mu(\Psi_A/\Psi_{A'}) = \sqrt{\frac{2m_N^2\Gamma_{A\to A'\gamma}}{\alpha p_\gamma^3}} \text{ (D. Keller, H. Hicks, 2011)}$$

Introduction	Electromagnetic decays	Magnetic moments	Results 00000	Conclusion	Tables	Appendix
Magnetic	c moments					

-Orbital angular momentum

$$\hat{\mu}_l = \frac{e}{2m}\hat{l}$$

-Spin

$$\mu_s = \frac{e_q \hbar}{2m_q} 2\hat{S}$$

$$\vec{\mu} = \sum_i 2\mu_i \vec{s}_i + \sum_i \mu_i \vec{l}_i = \vec{\mu}_{spin} + \vec{\mu}_{orbital}$$

matrix elements

$$\langle \Psi_{A'} | \sum_{i} \mu_i (2\vec{s}_i + \vec{l}_i) | \Psi_A \rangle \tag{1}$$

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix
		0				
Experimental information	tion for CQM mm					

Experimental information for CQM mm

 $\begin{array}{l} \mbox{magnetic moments of Baryons} \\ \mbox{For example :} \\ \mu_p = 2.7928473508 \pm 0.000000085(\mu_N) \\ \mu_n = -1.91304273 \pm 0.0000045(\mu_N) \\ \mu_\Lambda = -0.613 \pm 0.004(\mu_N) \end{array}$

$$\begin{array}{c} \mu_p \\ \mu_n \\ \mu_\Lambda \end{array} \right\} \begin{array}{c} CQM\mu_u \\ CQM\mu_d \\ CQM\mu_s \end{array}$$

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix
		$\circ \bullet$				
Experimental informa	tion for UQM mm					

Experimental information for UQM mm

R 7

$$\langle \hat{O} \rangle_{UQM} = \mathcal{N}^2 \left[\langle \hat{O} \rangle_{CQM} + \sum_{B,C,l} a_{A \to BC}^2 \langle BC; l | \hat{O} | BC; l \rangle + \dots \right]$$

$$a_{A\to B\eta}^{2} = (6\gamma\varepsilon')^{2} \int_{0}^{\infty} dk \frac{k^{4}e^{-2F^{2}k^{2}}}{[m_{A} - E_{B}(k) - E_{\eta}(k)]^{2}} \left(\theta_{A\to B\eta_{8}}\cos\theta_{P} - \theta_{A\to B\eta_{1}}\sin\theta_{P}\right)^{2}.$$

$$\begin{array}{cccc} & \mu p \\ \mu n \\ \mu \lambda \\ hadron masses \\ \theta p \\ \hline \psi_{baryon} & \gamma f_b(\vec{p}) \times e^{-\alpha_b^2 \vec{p}/2} \\ \psi_{meson} & \gamma f_c(\vec{p}) \times e^{-\alpha_b^2 \vec{p}/2} \\ \psi_{q\bar{q}} & \gamma f_{q\bar{q}}(\vec{p}) \times e^{-\alpha_b^2 \vec{p}/2} \\ \psi_{q\bar{q}} & \gamma f_{q\bar{q}}(\vec{p}) \times e^{-\alpha_b^2 \vec{p}/2} \\ \gamma_d & \gamma^2(\alpha_d^2 \ln(2) = 4 \pm 1 \end{array} \right)$$

Gustavo Hazel Guerrero Navarro

Gustavo Hazel Guerrero Navarro

Contribution of the sea quark pairs to the electromagne

Introduction 000000	Electromagnetic decays	Magnetic moments	Results ○○○●○	Conclusion	Tables	Appendix
Electromagnetic of	decays					
$\Gamma^{1}_{A \to A' \gamma}$	$= \frac{\alpha E_{A'} p_{\gamma}^3}{2m_A m_N^2} \mu_S^2 (\Psi_A$	$(/\Psi_{A'})$				

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix
			00000			
Electromagnetic deca	iys					

How can we understand the difference by using an Unquenching?

$$\begin{split} \Gamma_{A \to A'\gamma} &= 2_{pol} 2\pi \left| \langle \Psi_{A'} \gamma | \hat{H}_{int} | \Psi_A \rangle \right|^2 \rho_f \\ &= 4\pi \left| \langle \Psi_{A'} \gamma | \hat{H}_{int}^1 | \Psi_A \rangle + \langle \Psi_{A'} \gamma | \hat{H}_{int}^2 | \Psi_A \rangle \right. \\ &+ \left\langle \Psi_{A'} \gamma | \hat{H}_{int}^3 | \Psi_A \rangle + \left\langle \Psi_{A'} \gamma | \hat{H}_{int}^4 | \Psi_A \rangle \right|^2 \rho_f \end{split}$$

If we consider only the first term \hat{H}_{int}^1 , it would be valid into the CQM expressions. Doing this gives us non-consistent expressions into the UQM. Then

$$\begin{split} \Gamma_{A \to A'\gamma} &= 4\pi \rho_f \mathcal{N}_{A'}^2 \mathcal{N}_{A}^2 \\ &\times \left| i \sqrt{\frac{2\pi}{p_{\gamma} V}} \left[\langle A' | \vec{\mu}_S | A \rangle + \sum_{BB'C} a_{A' \to B'C} a_{A \to BC} \langle B'C | \vec{\mu}_S | BC \rangle \right] \times \vec{p}_{\gamma} \\ &+ \sum_{BC} a_{A \to BC} \langle A', \gamma | \hat{H}_{int}^2 | BC \rangle \\ &+ \sum_{B'C'} a_{A' \to B'C'} \langle B'C', \gamma | \hat{H}_{int}^3 | A \rangle \\ &+ \sum_{BCB'C'} a_{A' \to B'C'} a_{A \to BC} \langle B'C', \gamma | \hat{H}_{int}^4 | BC \rangle \right|^2 \end{split}$$

Introduction	Electromagnetic decays	Magnetic moments	Results 00000	Conclusion	Tables	Appendix
Conclus	ions					

$$\begin{array}{ccc} exp & model \\ \sigma_{exp} & \longleftrightarrow & \Gamma_{A \to A'\gamma} & \longleftrightarrow & \mu(\Psi_A/\Psi_{A'}) \\ & ? & ! \end{array}$$

- In the UQM all the "parameters" are well defined into this model and fited with the experimental information.
- The dependence of the magnetic moment is given strongly by the baryon and pair size.
- Due to the additional terms, there is still a lack in the expression of the decay width in the UQM, for that the effective contribution is not so clear even.
- Is there clear differences with the CQM.
- It could be more appropriated a comparison using another expression related to direct experimental data.

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

Thank you

Introduction	Electromagnetic decays	Magnetic moments	Results 00000	Conclusion	Tables	Appendix

	$\Gamma_{\Delta \to N\gamma}$	$\Gamma_{\Sigma^{*0} \to \Lambda^0 \gamma}$	$\Gamma_{\Sigma^{*+} \to \Sigma^{+} \gamma}$
U-spin [Keller, 2011, 2012]		423±38	250±23
$HB_{\chi}PT$ [Butler]	670-790	252-540	70-220
Algebraic model [Bijker, Franco]	342-344	221.3	140.7
QCD SR [Wang]	887	409	150
Large N _c [Lebed]	669±42	336±81	149±36
Spectator [Ramalho]	648	399	154
NRQM [Koniuk]		273	104
RCQM [Rollnick]		267	
χ CQM [Wagner]		265	105
MIT Bag [Soyeur]		152	117
Soliton [Scoccola]		243	91
Skyrme [Weigel]		157-209	47
$UQM^1\pi K\eta\eta'$	560 ± 27	287 ± 5	124 ± 3
Exp	660±60 [PDG, 2014]	445±80 [CLAS, 2011]	250±56 [CLAS, 2012]

TABLE : EM decay widths $A \to A' \gamma$ (keV) corresponding to distinct models (includying this) and the exp. data.

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

Transición (μ_N)	CQM	Large N_c [Jenkins]	Large $N_c \chi$ PT [F. Mendieta]	UQM $\pi K \eta \eta'$	Exp
Δ^+/p	2.66249	3.51*	3.51	3.03954	3.42 ±0.16
Σ^{*+}/Σ^+	-2.32402	2.96	3.17	-2.45244	$3.49\pm\!0.40$
Σ^{*0}/Λ^0	2.30579	2.96	2.73	2.5014	$3.02\pm\!0.27$
${\Xi^{*0}}/{\Xi^0}$	-2.32402	2.96	3.14	-2.44828	—

TABLE : Resultados de los momentos magnéticos de transición suponiendo la relación de Keller-Hicks.

Introduction	Electromagne O	etic decays	Magnetic mome	ents Result	s Conclusion	Tables	Appendix
Octete							
		Barión	$CQM\left(\mu_{N} ight)$	$UQM\left(\mu_{N} ight)$	$\mu_{exp}(\mu_N)$		
		p	2.793	2.793*	2.793		
		n	-1.913	-1.913*	-1.913		
		Σ^+	2.673	2.589	2.458±0.010		
		Σ^0	0.791	0.783	-		
		Σ^{-}	-1.091	-1.023	-1.160±0.025		
		Λ^0	-0.613	-0.613*	-0.613±0.004		
		Ξ^0	-1.435	-1.359	-1.250±0.014		
		Ξ^-	-0.493	-0.530	-0.651±0.003		
		Σ^0 / Λ^0	1 630	1 640	1 610+0 08		

TABLE : Momentos magnéticos de los bariones del octete

Introduction 000000	Electi O	romagnetic decays	Magnetic moments	Results 00000	Conclusion	Tables	Appendix
Decup	olete						
	Barión	$\mu(ec{s})$ val (μ_N)	$\mu(ec{s})$ mar (μ_N)	$\mu(ec{s})~(\mu_N)$	$\mu(\vec{l})~(\mu_N)$	$\mu(ec{s},ec{l})~(\mu_N)$	
	Δ^{++}	2.954	2.022	4.977	0.334	5.312	
	Δ^+	1.453	0.907	2.361	0.122	2.483	
	Δ^0	-0.049	-0.207	-0.256	-0.090	-0.346	
	Δ^{-}	-1.551	-1.322	-2.873	-0.303	-3.175	
	Σ^{*+}	1.911	0.615	2.526	0.264	2.789	
	${\Sigma^{*0}}$	0.165	-0.1310	0.034	0.003	0.037	
	Σ^{*-}	-1.580	-0.877	-2.458	-0.259	-2.716	
	Ξ^{*0}	0.473	-0.291	0.182	0.159	0.340	
	Ξ*-	-1.661	-0.422	-2.083	-0.168	-2.251	
	Ω^{-}	-0.929	-0.755	-1.6848	-0.173	-1.858	

 $\label{eq:table_transform} \begin{array}{l} \mathsf{TABLE}: \mathsf{Resultados} \ \mathsf{de} \ \mathsf{los} \ \mathsf{momentos} \ \mathsf{magnéticos} \ \mathsf{de} \ \mathsf{los} \ \mathsf{barinons} \ \mathsf{del} \ \mathsf{decuplete} \ \mathsf{en} \ \mathsf{el} \ \mathsf{UQM} \ \mathsf{para} \ \mathsf{la} \ \mathsf{contribución} \ \mathsf{del} \ \mathsf{espin}, \ \mu(\vec{s}), \ \mathsf{del} \ \mathsf{momentos} \ \mathsf{momentos} \ \mathsf{momentos} \ \mathsf{del} \ \mathsf{d$

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

Barión	$CQM\left(\mu_{N}\right)$	UQM (μ_N)	$Exp\left(\mu_{N} ight)$
Δ^{++}	5.556	5.31165	3.7 a 7.5
Δ^+	2.7318	2.48262	-
Δ^0	-0.092	-0.346408	-
Δ^{-}	-2.916	-3.17544	-
Σ^{*+}	3.091	2.78921	-
Σ^{*0}	0.267	0.036555	-
Σ^{*-}	-2.557	-2.71611	-
Ξ^{*0}	0.626	0.340423	-
Ξ*-	-2.198	-2.25133	-
Ω^{-}	-1.839	-1.85787	$\textbf{-2.02}\pm0.05$

TABLE : Comparación de los momentos magnéticos con los resultados del CQM y los resultados experimentales

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

Momentos magnéticos de transición

=

Transición (μ_N)	$\mu_s \pi$	$\mu_l \pi$	$\mu_T \pi$
Δ^+/p	2.68091	0.210584	2.89
Σ^{*+}/Σ^+	-2.1453	-0.0779084	-2.22
Σ^{*0}/Λ^0	2.13222	0.174976	2.31
$\frac{2}{\sqrt{3}}\Sigma^{*0}/\Lambda^0$	2.46207	0.202045	2.66
${\Xi^{*0}}/{\Xi^0}$	-2.00569	-0.0749409	-2.08

 TABLE : Resultados de los momentos magnéticos de transición en el UQM para la contribución de espín, μ_s , del momento angular relativo, μ_l y el total, μ_T , considerando la contribución del meson π .

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

Transition (μ_N)	$\mu_s\pi K\eta_1\eta_8$	$\mu_l \pi K \eta_1 \eta_8$	$\mu_T \pi K \eta_1 \eta_8$	$\mu_s \pi K \eta \eta'$	$\mu_l \pi K \eta \eta'$	$\mu_T \pi K \eta \eta'$
Δ^+/p	2.75012	0.301182	3.0513	2.74089	0.298646	3.03954
Σ^{*+}/Σ^{+}	-2.29202	-0.158617	-2.45063	-2.29381	-0.158625	-2.45244
Σ^{*0} / Λ^0	2.27782	0.233697	2.51152	2.26705	0.234352	2.5014
$\frac{2}{\sqrt{3}}\Sigma^{*0}/\Lambda^0$	2.6302	0.26985	2.90005	2.61777	0.270607	2.88837
${\Xi^{*0}}/{\Xi^0}$	-2.2728	-0.183334	-2.45614	-2.2625	-0.185787	-2.44828

TABLE : Resultados de los momentos magnéticos de transición en el UQM para la contribución de espín, μ_s , del momento angular relativo, μ_l y el total, μ_T , considerando la contribución de los mesones $\pi K \eta_1 \eta_8$ y en la mezcla $\pi K \eta \eta'$.

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

Transition (μ_N)	$\mu_s \pi$	$\mu_l \pi$	$\mu_T \pi$
Δ^+/p	2.68091	0.210584	2.8915
Σ^{*+}/Σ^+	-2.1453	-0.0779084	-2.22324
Σ^{*0}/Λ^0	2.13222	0.174976	2.30719
$\frac{2}{\sqrt{3}}{\Sigma^{*0}}/{\Lambda^0}$	2.46207	0.202045	2.66412
${\Xi^{*0}}/{\Xi^0}$	-2.00569	-0.0749409	-2.08063

 TABLE : Resultados de los momentos magnéticos de transición en el UQM para la contribución de espín, μ_s , del momento angular relativo, μ_l y el total, μ_T , considerando la contribución del meson π .

Introduction 000000	Electromagnetic decays	Magnetic moments	Results 00000	Conclusion	Tables	Appendix
Cálculo	del parámetro γ	2				

$$\bar{d} - \bar{u} = \int_0^1 dx \left[\bar{d}(x) - \bar{u}(x) \right] = 0.118 \pm 0.012,$$

$$\bar{d} = \mathcal{N}_{N}^{2} \left(\frac{1}{6} a_{N \to N\pi}^{2} + \frac{1}{6} a_{N \to N\eta}^{2} + \frac{4}{6} a_{N \to \Delta\pi}^{2} + \frac{2}{6} a_{N \to N\pi} a_{N \to N\eta} \right)$$

$$\bar{u} = \mathcal{N}_{N}^{2} \left(\frac{5}{6} a_{N \to N\pi}^{2} + \frac{1}{6} a_{N \to N\eta}^{2} + \frac{2}{6} a_{N \to \Delta\pi}^{2} - \frac{2}{6} a_{N \to N\pi} a_{N \to N\eta} \right).$$

$$\Delta P = \bar{d} - \bar{u} = 0.118 = \mathcal{N}_N^2 \left(\frac{2}{3} a_{N \to N\pi}^2 - \frac{1}{3} a_{N \to \Delta\pi}^2 - \frac{2}{3} a_{N \to N\pi} a_{N \to N\eta} \right),$$

$$\begin{split} \gamma^2 &= \frac{-3\Delta P}{\alpha_{N\to\Delta\pi}^2 (3\Delta P+1) + 2\alpha_{N\to N\pi} \alpha_{N\to N\eta}} \\ \times & \frac{1}{\alpha_{N\to N\pi}^2 (3\Delta P-2) + 3\Delta P (\alpha_{N\to N\eta}^2 + \alpha_{N\to N\eta}^2 + \alpha_{N\to\Sigma K}^2 + \alpha_{N\to\Lambda K}^2 + \alpha_{N\to\Sigma^*}^2)} \end{split}$$

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

Cálculo de las ampitudes de probabilidad de estados $|BC\rangle$

$$a_{A \to BC}^{2} = \left(6\gamma \theta_{A \to BC} \varepsilon'\right)^{2} \int_{0}^{\infty} dk_{0} \frac{k_{0}^{4} e^{-2F^{2}k_{0}^{2}}}{\left[m_{A} - \sqrt{m_{B}^{2} + k_{0}^{2}} - \sqrt{m_{C}^{2} + k_{0}^{2}}\right]^{2}}$$

 $a_{A \to B_8C} a_{A \to B_{10}C} = (6\gamma \varepsilon')^2 \, \theta_{A \to B_{10}C} \theta_{A \to B_8C} \times$

$$\int_0^\infty dk_0 \frac{k_0^4 e^{-2F^2 k_0^2}}{\left[m_A - \sqrt{m_{B_8}^2 + k_0^2} - \sqrt{m_C^2 + k_0^2}\right] \left[m_A - \sqrt{m_{B_{10}}^2 + k_0^2} - \sqrt{m_C^2 + k_0^2}\right]}$$

$$a_{A\to B\eta}^2 = (6\gamma\varepsilon')^2 \int_0^\infty dk \frac{k^4 e^{-2F^2k^2}}{[m_A - E_B(k) - E_\eta(k)]^2} \left(\theta_{A\to B\eta_8} \cos\theta_P - \theta_{A\to B\eta_1} \sin\theta_P\right)^2.$$

$$a_{A\to B\eta'}^{2} = (6\gamma\varepsilon')^{2} \int_{0}^{\infty} dk \frac{k^{4}e^{-2F^{2}k^{2}}}{[m_{A} - E_{B}(k) - E_{\eta'}(k)]^{2}} \left(\theta_{A\to B\eta_{8}}\sin\theta_{P} + \theta_{A\to B\eta_{1}}\cos\theta_{P}\right)^{2}.$$

Introduction	Electromagnetic decays	Magnetic moments	Results	Conclusion	Tables	Appendix

$$a_{A_1 \to B_1 \eta} a_{A_2 \to B_2 \eta} =$$

$$\begin{split} &(6\gamma\varepsilon')^2 \int_0^\infty dk \frac{k^4 e^{-2F^2k^2}}{[m_{A_1} - E_{B_1}(k) - E_{\eta}(k)][m_{A_2} - E_{B_2}(k) - E_{\eta}(k)]} \\ &\times (\theta_{A_1 \to B_1\eta_8} \cos\theta_P - \theta_{A_1 \to B_1\eta_1} \sin\theta_P) (\theta_{A_2 \to B_2\eta_8} \cos\theta_P - \theta_{A_2 \to B_2\eta_1} \sin\theta_P). \end{split}$$

$$a_{A_1 \to B_1 \eta'} a_{A_2 \to B_2 \eta'} =$$

$$\begin{split} &(6\gamma\varepsilon')^2 \int_0^\infty dk \frac{k^4 e^{-2F^2k^2}}{[m_{A_1} - E_{B_1}(k) - E_{\eta'}(k)][m_{A_2} - E_{B_2}(k) - E_{\eta'}(k)]} \\ &\times (\theta_{A_1 \to B_1 \eta_8} \sin \theta_P + \theta_{A_1 \to B_1 \eta_1} \cos \theta_P) (\theta_{A_2 \to B_2 \eta_8} \sin \theta_P + \theta_{A_2 \to B_2 \eta_1} \cos \theta_P). \end{split}$$