Measurement of the J/ψ and $\psi(2S)$ cross section in pp collisions at $\sqrt{s} = 13$ TeV

Heber Zepeda Fernández

Advisor: Dr. Alberto Sánchez Hernández CINVESTAV, CMS http://inspirehep.net/record/1447964

May 24, 2017

・ロト ・四ト ・ヨト ・ヨト

2 Measurement of the cross section

Introduction

2

イロン イヨン イヨン イヨン

Introduction: Prompt and Non prompt production

Let's take a J/ψ for the example.

Figure: Prompt and no-prompt production of J/ψ .

Introduction

Introduction: How is it possible?

Figure: J/ψ from proton-proton collision.

2

물 🖌 🛪 물 🕨

Introduction: Explaining production

• NRQCD factorization: Short-distance (Color Singlet Model) and long-distance (Color Octet Model).

The two steps of quarkonium production. The initial

 $Q \; \overline{Q} \; \text{in t} \;_{\overline{QQ}} \;$ and the final state $t_{_{BS}} \;$ is the bound state.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Introduction: Explaining production

Several models:

• Color-Singlet Model

Figure: NLO and NNLO*CS contributions at $(left)\sqrt{s} = 1.96$ TeV and (right) $\sqrt{s} = 7$ TeV. Taken from Journal of Physics G: Nuclear and Particle Physics, 38, Number 12.

< ロ > < 同 > < 三 > < 三 >

Introduction

The Compact Muon Solenoid (CMS)

२२२ १/21

Figure: The incredible CMS detector $\Rightarrow \quad (\Rightarrow) \quad (\Rightarrow)$

Introduction: High energy (7 TeV) at LHC: CMS

Figure: The J/ψ and $\psi(2S)$ differential p_T cross sections times the dimuon branching fractions for four rapidity bins and integrated over the range |y| < 1.2. Taken from **Phys. Rev. Lett. 114, 191802**

< ロ > < 同 > < 三 > < 三 >

9/21

Before the unknown, the known.

It was necessary to re-discovered.

Measurement of the cross section

Cross section

The differential cross section is given by:

$$Br(\psi \to \mu\mu) \cdot \frac{d^2\sigma}{dp_T dy} = \frac{N^{c\bar{c}}(p_T, y)}{\mathcal{L}\Delta y \Delta p_T} \Big\langle \frac{1}{\epsilon(p_T, y) \mathcal{A}(p_T, y)} \Big\rangle, \qquad (1)$$

The measurement:

- 2.4 \textit{fb}^{-1} for \textit{J}/ψ and 2.7 \textit{fb}^{-1} for $\psi(2\textit{S})$
- 20 GeV $< p_{T} \sim$ 120 GeV and |y| < 1.2 (increasing 0.3) for both particles.

Measurement of the yields $N(c\bar{c})$

- Mass fit: Different PDF function for J/ψ and $\psi(2S)$.
- Lifetime fit: To separate Prompt and No-Prompt.

As example,

Figure: Mass fit (left) and lifetime fit (right) for J/psi in a particular y and p_T bin.

Acceptance and efficiency

- Acceptance
- We used Monte Carlo simulation.

$$\mathcal{A}(p_T, y) = \frac{N_{|kin}^{gen}(p_T, y)}{N^{gen}(p_T, y)}.$$
(2)

- Efficiency
- We used data.

$$\epsilon_{\mu\mu}(\boldsymbol{p}_{T},\boldsymbol{y}) = \epsilon(\boldsymbol{p}_{T1},\eta_{1}) \cdot \epsilon(\boldsymbol{p}_{T2},\eta_{2}) \cdot \rho(\boldsymbol{p}_{T},\boldsymbol{y}) \cdot \epsilon_{tk}^{2}$$
(3)

• All efficiencies from data.

• $\epsilon(p_{T_i}, \eta_i) = \epsilon_{reco} \cdot \epsilon_{L1L2} \cdot \epsilon_{L3}$, from TnP technique. • $\epsilon_{\mu\mu} = \text{Reconstructed} / \text{Accepted}$.

э

Systematic uncertainties

- Uncertainties in the estimation of the yield.
 - Statistical.
 - Non-prompt fraction statistical.
- Acceptance statistical.
 - MC.
 - Statistic of sample.
- Reconstruction efficiency.
 - Single muon efficiency.
 - Dimuon orrelation (ρ).
- Rapidity integrated range.

Measurement of cross section

We have all the numbers of

$$Br(\psi \to \mu\mu) \cdot \frac{d^2\sigma}{d\rho_T dy} = \frac{N^{c\bar{c}}(\rho_T, y)}{\mathcal{L}\Delta y \Delta \rho_T} \Big\langle \frac{1}{\epsilon(\rho_T, y) \mathcal{A}(\rho_T, y)} \Big\rangle, \qquad (4)$$

So, we can calulate the cross section:

Measurement of cross section: Prompt J/ψ and $\psi(2S)$

Figure: Prompt cross section times branching ratios for the J/ψ (left) and $\psi(2S)$ (right) in several rapidity ranges for the barrel trigger.

Measurement of the Cross section

Figure: (left) Prompt cross sections times branching ratios for the J/ψ Comparison of 7 TeV and 13 TeV cross sections. (right) Cross section ratios $\psi(2S)/J/\psi$ (right).

Measurement of the Cross section

Figure: (Comparison of the non-prompt fraction of J/ψ (left) and $\psi(2S)$ (right) as a function of dimuon pT for 13 TeV and 7 TeV.

< ロ > < 同 > < 三 > < 三 >

Conclusions

Conclusions

- The differential production of J/ψ and $\psi(2S)$ cross section have been measured in pp collisions at $\sqrt{s} = 13$ TeV with the CMS detector at the LHC.
- This measurement has been performed in central rapidity region (|y| < 1.2) as function of p_T in several rapidity region.
- We studied the p_T from 20 GeV to 120 GeV.
- We could make the ratios of cross sections measured at 13 TeV and 7 TeV.
- The complete result will be public in few weeks.

References

CMS-PAS-BPH-15-005,

http://inspirehep.net/record/1447964

Thanks

References CMS-PAS-BPH-15-005, http://inspirehep.net/record/1447964

