# The AdS/CFT correspondence and the Quark-Gluon Plasma

#### Author: Viktor Jahnke

Instituto de Ciencias Nucleares - UNAM

viktor.jahnke@correo.nucleares.unam.mx

March 1, 2017

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

# Introduction

- 2 The Quark-Gluon Plasma (QGP)
- 3 The AdS/CFT correspondence

#### 4 Strongly Coupled Plasmas

- Anisotropic Plasmas
- Higher Curvature Corrections
- Anisotropic Plasma with Higher Curvature Corrections

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

#### 5 Conclusion

# Introduction

#### Goal

To use the AdS/CFT correspondence to study the Quark-Gluon Plasma (QGP) produced in heavy-ion collisions at RHIC and LHC.

#### Motivation

- In principle, the QGP is described by QCD.
- At  $T \sim T_c$ , the QGP is strongly coupled, what makes problematic the use of perturbative QCD;
- Lattice QCD is poorly suited for the computation of quantities in the real-time formalism, like transport coefficients or spectral functions.
- The AdS/CFT correspondence can be used the study strongly coupled systems similar to the QGP.

### Heavy-Ion Collisions



▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Probes of the QGP:

- thermal probes: photons and dileptons
- heavy quarks
- quarkonium mesons

# QCD phase diagram



Figure from: http://www.jicfus.jp/en/wp-content/uploads/2012/12/QGPT.jpg

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

#### Conformal Anomaly - Lattice QCD

For an ideal gas:  $\varepsilon = 3P$  and  $\varepsilon \sim T^4$ ,  $P \sim T^4$ . The *conformal anomaly*  $\Delta = (\varepsilon - 3P)/T^4$  measures the strength of interactions in non-conformal theories.



Bazavov, Bhattacharya, Cheng, Christ, DeTar, Ejiri, Gotlieb, Gubta et al 2009

The results of lattice QCD for  $\Delta$  show that the QGP behaves as a strongly coupled fluid for  $T \approx T_c$ .

# The AdS/CFT correspondence Maldacena 1997

Holographic Principle: gravity theory in  $M_{d+1}$  = gauge theory in  $\partial M_{d+1}$ .



Most known example:

type IIB superstrings in  $AdS_5 \times S^5 \leftrightarrow \mathcal{N} = 4 SU(N_c)$  SYM in  $\mathbb{R}^{3,1}$ 



# "Derivation" of the AdS/CFT correspondence

Gravitational effect of N D-branes:  $g_s N = g_{xM}^2 N = \lambda$ 

 $g_{s}N \ll 1$ 



= 900

AdS/CFT dictionary Gubser, Klebanov, Polyakov 1998, Witten 1998

#### Fundamental Equation:

$$\left\langle \exp \int d^4 x \, \phi_{\partial \mathrm{AdS}}(x) \mathcal{O}(x) \right\rangle_{\mathrm{CFTs}} = Z_{\mathrm{string}}[\phi_{\partial \mathrm{AdS}}]$$

#### Field/Operator Correspondence

- For each gauge field operator O(x) there is a corresponding field φ(x, r) in the gravity theory;
- The value of the field at the boundary of AdS,  $\phi_{\partial AdS}$ , acts as the source of the operator  $\mathcal{O}(x)$ .

Parameters of the correspondence:

$$\mathcal{N} = 4$$
 SYM:  $g_{YM}$ ,  $N$ .

type IIB strings:  $g_s$ ,  $R/\sqrt{\alpha'}$ 

$$g_{
m YM}^2 = 4\pi g_s$$

$$R^4/\alpha'^2 = N g_{\rm YM}^2 \equiv \lambda$$

# AdS/CFT

Quantum Corrections: 
$$\ell_p/R = \pi^4/(2N^2)$$

Higher Derivative Corrections: 
$$\left|lpha'/R^2=1/\sqrt{\lambda}
ight|$$

#### Limits $N \to \infty$ , $\lambda \to \infty$

type IIB string theory  $\rightarrow$  Classical type IIB Supergravity

$$Z_{\mathsf{string}}[\phi_{\partial AdS}] o \expig(-S^{\mathsf{on-shell}}_{\mathsf{SUGRA}}ig)$$

$$\langle \mathcal{O}(x_1)\mathcal{O}(x_2)...\mathcal{O}(x_n)\rangle = -\frac{\delta^n S_{\mathsf{SUGRA}}^{\mathsf{on-shell}}[\phi_{\partial \mathsf{AdS}} = J]}{\delta J(x_1)\delta J(x_1)...\delta J(x_n)}$$

Calculations at finite temperature  $\rightarrow$  Black Brane in AdS

# Strongly Coupled Plasma

 $SU(N_c) \ \mathcal{N} = 4$  SYM theory at finite temperature and with  $\lambda >> 1$ 

model for the QGP



QCD and  $\mathcal{N} = 4$  SYM are not so different at  $T_c \leq T \leq 5T_{c_{e_1}}$ 

# $\mathcal{N}=4$ SYM plasma

#### $\mathcal{N}=4$ SYM plasma - unrealistic features

- static
- isotropic
- $\lambda = \infty$  (fixed)
- $N = \infty$
- only have adjoint fields, etc

In this work we investigate the effects of

- anisotropy
- higher curvature corrections

### Sources of Anisotropy in Heavy-Ion Collisions

#### There are at least two sources of anisotropy





Anisotropy related to the rapid expansion of the plasma along the beam axis

- $P_z < P_{xy}$
- Occurs even in central collisions!

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Spatial Anisotropy  $\rightarrow$  Elliptic Flow

Occurs only in non-central collisions

### Holographic Model for an Anisotropic Plasma Mateos, Trancanelli 2011

Gauge Theory - Deformation of the 
$$\mathcal{N}=4$$
 theory by a  $\theta\text{-term}$ 

$$S = S_{\mathcal{N}=4} + \int \theta(z) \operatorname{Tr} F \wedge F, \ \ \theta(z) \propto z.$$

Gravity Theory - solution of type IIB SUGRA field equations with D7-branes dissolved in the geometry

$$S = \frac{1}{2\kappa^2} \int_{\mathcal{M}} \sqrt{-g} \left( R + 12 - \frac{1}{2} (\partial \phi)^2 - \frac{e^{2\phi}}{2} (\partial \chi)^2 \right) + \text{boundary term}$$
$$ds^2 = \frac{e^{-\phi/2}}{u^2} \left( -F(u)B(u)dt^2 + dx^2 + dy^2 + H(u)dz^2 + \frac{du^2}{F(u)} \right)$$
$$\chi = a z, \quad \phi = \phi(u).$$

u is AdS radial coordinate

Boundary at u = 0 and Horizon at  $u = u_H$ 

**a** = parameter of **anisotropy** 

$$P_z < P_{xy}$$

ロ ト オ 厚 ト オ ヨ ト オ ヨ ト つ へ の

# Higher Curvature Corrections

The limit  $\lambda = \infty$  in the gauge theory suppress higher curvature corrections in the gravity theory.

- In the gauge theory the finite- $\lambda$  corrections appears as powers of  $1/\sqrt{\lambda};$
- In the gravity side this corrections appears as higher curvature terms scaled by powers of  $\alpha'/R^2$ ;
- In type IIB superstring the leading corrections arise as terms with the schematic form  $\alpha'^3 R^4$ ;

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

## Lovelock Theory and AdS/CFT Edelstein 2013

- they are generalizations of Einstein-Hilbert action;
- these theories contain higher curvatures corrections, but the equations of motion are still of second order;
- they admit a large class of asymptotically AdS black holes.

Simplest example:

Gauss-Bonnet Theory of Gravity (in 5 dimensions)

$$S = \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g} \left( R + \frac{12}{L^2} + \frac{L^2}{2} \lambda_{\rm GB} \mathcal{L}_{\rm GB} \right)$$

where  $\mathcal{L}_{GB} = R^2 - 4R_{mn}R^{mn} + R_{mnrs}R^{mnrs}$ .

In the gauge side: CFT with two independent central charges Unitarity, Causality and Positive of Energy Fluxes:  $\rightarrow -7/36 \leq \lambda_{\rm GB} \leq 9/100$  Hofman 2009, Buchel, Myers 2009

# Anisotropic Plasma with Higher Curvature Corrections

Jahnke, Misobuchi, Trancanelli 2014

Gravity Theory - anisotropic solution with a GB term

$$S_{a,GB} = \frac{1}{2\kappa^2} \int d^5 x \sqrt{-g} \left( R + 12 - \frac{1}{2} (\partial \phi)^2 - \frac{e^{2\phi}}{2} (\partial \chi)^2 + \frac{\lambda_{GB}}{2} \mathcal{L}_{GB} \right)$$

$$\mathcal{L}_{\mathsf{GB}} = R^2 - 4R_{mn}R^{mn} + R_{mnrs}R^{mnrs},$$

Analitic solution up to  $\mathcal{O}(a^2)$  and for any  $\lambda_{\mathsf{GB}}$ 

$$ds^{2} = \frac{e^{-\phi/2}}{u^{2}} \left( -F(u)B(u)dt^{2} + dx^{2} + dy^{2} + H(u)dz^{2} + \frac{du^{2}}{F(u)} \right)$$

 $\chi = a z, \quad \phi = \phi(u).$ 

- Holographic Renormalization  $\rightarrow T_{\mu\nu}$  up to  $\mathcal{O}(a^2, \lambda_{GB})$
- DC conductivities:  $\sigma_{||}$  and  $\sigma_{\perp}$
- Ratios  $\eta_{||}/s$  and  $\eta_{\perp}/s 
  ightarrow$  violation of the KKS bound  $\eta/s \geq 1/(4\pi)$

うして ふゆう ふほう ふほう うらつ

Probing strongly coupled anisotropic plasmas from higher curvature gravity Jahnke, Misobuchi 2015

#### Model: anisotropic plasma with $\lambda_{\text{GB}} \neq 0$

 $S = S_{a,{\scriptscriptstyle \mathsf{GB}}} + S_{\scriptscriptstyle U(1)}$ 

#### Observables

- drag force
- jet quenching parameter
- quarkonium static potential
- photon production rate

Drag Force on a heavy quark Gubser 2006, Holzhey, Karch, Kovtun, Kozcaz, Yaffe, 2006

Trailing string





Э



Left: motion along the anisotropic direction. Right: motion along the transverse plane. We have fixed v = 0.3.

# Quarkonium Static Potential $V_{Qar{Q}}$

Retangular Wilson loop with sizes T and L:  $\lim_{T\to\infty} \langle W(C) \rangle \approx e^{iT(V_{Q\bar{Q}}+2M_Q)} = e^{iS_{NG}^{\text{on-shell}}}$ 



 $S_{\scriptscriptstyle 
m NG}^{
m on-shell}\sim$  word-sheet area

Screening Length  $L_s$  = property of the plasma



# Quarkonium Static Potential $V_{Q\bar{Q}}$ - Results



Left:  $\lambda_{GB} = -0.1$  (red),  $\lambda_{GB} = 0$  (black),  $\lambda_{GB} = 0.1$  (blue), We have fixed:  $a/T \approx 0.3$ ,  $\theta = \pi/4$ .

Right:  $\theta = 0$  (black),  $\theta = \pi/4$  (purple),  $\theta = \pi/2$  (blue),  $\lambda_{GB} = 0$ 

#### ▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

# Quarkonium Static Potential $V_{Q\bar{Q}}$ - Results



(a) Screening length  $L_s(a, \lambda_{GB})$  normalized with respect to the isotropic result  $L_{iso} = L_s(0, 0)$ . (b) Ratio  $L_{\perp}/L_{||}$ , where  $L_{\perp}$  is calculated for  $\theta = \pi/2$  and  $L_{||}$  is calculated for  $\theta = 0$ .

# <u>Discussion</u> - Effects of $(a, \lambda_{GB}) \neq (0, 0)$

#### Effects of $\lambda_{GB} \neq 0$

|                       | $\eta/s$ | Drag force | Jet quenching | Screening length | Photon production |
|-----------------------|----------|------------|---------------|------------------|-------------------|
| $\lambda_{ m GB} > 0$ | decrease | increase   | increase      | decrease         | increase          |
| $\lambda_{ m GB} < 0$ | increase | decrease   | decrease      | increase         | decrease          |
| $\alpha'^3 R^4$       | increase | increase   | decrease      | decrease         | increase          |

#### Effects of Anisotropy

- Shear Viscosity:  $\eta_{\perp} > \eta_{\parallel} \Longrightarrow \ell_{mfn}^{\perp} > \ell_{mfn}^{\parallel}$
- Drag Force:  $F_{drag}^{\perp} < F_{drag}^{\parallel}$
- Jet Quenching Parameter:  $\hat{q}_{\perp} < \hat{q}_{||}$
- Screening Length:  $L_{\perp} > L_{\parallel}$
- Photon Production Rate:  $\Gamma^{\perp}_{photon} < \Gamma^{\parallel}_{photon}$

At weak coupling:  $|\eta/s \sim \ell_{mfp}|$ 

# Conclusion

- the AdS/CFT correspondence can be used to understand strongly coupled plasmas similar to the QGP;
- we were able to understand the effects of the anisotropy and higher curvature corrections in some physical observables of the plasma;

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

• this information might be useful in the construction of phenomenological models.

# THE END

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?