

Outline

- Efficiency comparison multiplicity bins vs MB case for spherocity/sphericity in three different binnings for the cuts and the percentage selection of the event shape.
- Sphericity/Spherocity correlations.
- Transverse momentum spectra was obtained for MC ESD and with the corresponding efficiency and secondaries correction.
- A study for eta and phi distributions was performed to explain efficiency behaviour for isotropic low multiplicity at high pt events.

DSoftware

DAliRoot: v5-08-13a-1 AliPhysics: vAN-20160716-1 ROOT:v5-34-30-alice5-alice-1
\square Datasets
GGood runs (according with RCT) LHC15f pass?
LHC15g3a3 (Pythia 8 - Monash 2013) anchored to LHC15f pass2
\square Event selection
-AliVEvent:::kINT7, AnalysisUtils::IsSPDClusterVsTrackletBG[], IsPileupFromSPDInMultBins[], IsIncompleteDAQ[]

-Vertex

\square For events with both SPD and Track vertices reconstructed, their separation along the z-coordinate was required to be smaller than 5 mm
\square Sphero(i)city is reconstructed using more than two tracks with transverse momentum greater than $0.15 \mathrm{GeV} / c$ and within $|\eta|<0.8$. Three sets of cuts were tested:

QTPC: GetStandardTPCOnlyTrackCuts[]+TPCrefit
—Hybrid: CreateTrackCutsPWGJE[10001008]+CreateTrackCutsPWGJE[10011008)
\square Standard: GetStandardITSTPCTrackCuts2011(kTRUE,1)
DAt the end we decided to use the TPC track cuts (global tracks which satisfy GetStandardTPCOnlyTrackCuts(]+TPCrefit). More details can be found here:
https://aliceinfo.cern.ch/Notes/node/529
Din this presentation, results for the reference estimator are discussed OGetReferenceMultiplicity(fESD, AliESDtrackCuts:..kTrackletsITSTPC, 0.8)

What is the correlation Spherocity vs Sphericity for diff. Nch bins We see the correlation and difference at low and high multiplicity

Multbins[14]=\{0,1, 4, 7,10,15, 20, 25, 30, 40, 50, 60, 70, 140 \};

For three different Event Shape binnings and percentiles

- $\operatorname{BinA}=\{0.0,0.1,0.4,0.9,1.0\} ; B i n A p c=\{0.0,10.0,40.0,90.0,100.0\} ;$
- $\operatorname{BinB}=\{0.0,0.2,0.4,0.8,1.0\} ; \quad B i n B p c=\{0.0,20.0,40.0,80.0,100.0\} ;$
- $\operatorname{BinC}=\{0.0 .0 .3 .0 .4 .0 .7 .1 .0\}: \quad B i n C p c=\{0.0,30.0,40.0,70.0,100.0\} ;$

Comparison for percentile bins with best statistics.

To try to understand the behaviour with respect event shape, for fixed holes.

- Eta and phi due the selection on Spherocity

To try to understand the behaviour with respect event shape, for fixed holes.

- Eta and phi due the selection on Spherocity

1.- Isotropic events must have Flater phi distributions
So holes are more sensible to eff.

To try to understand the behaviour with respect momentum,for fixed holes.

- Eta and phi dependence on the pt selection for dijets

To try to understand the behaviour with respect momentum, for fixed holes.

- Eta and phi dependence on the pt selection for isotropic
eta dist.

phi dist.

A study with respect multiplicity cuts is ongoing ...

The spectra for jetty charge particles (MC ESD).

- Selected with SPHEROCITY

Selected with SPHERICITY

The spectra for jetty charge particles corrected by secondaries and efficiency (jetty efficiency).

- Selected with SPHEROCITY

Selected with SPHERICITY

The spectra for isotropic charge particles (MC ESD)

- Selected with SPHEROCITY

Selected with SPHERICITY

The spectra for isotropic charge particles corrected by secondaries and efficiency (for isotropic cut applied to low $\mathrm{dN} / \mathrm{deta}<25$).

- Selected with SPHEROCITY

Selected with SPHERICITY

Conclusions

- Efficiency for jetty events is better than for isotropic ones.
- Jetty events efficiency different than MB sample, but no mult dependence.
- Isotropic events must to have flat phi distribution, so this makes efficiency more sensitive.
- High pt makes efficiency sensitive to holes. To do
- Get phi and eta distributions adding multiplicity cuts.

Backup

For three different SPHEROCITY binnings for JETTY events

- $\operatorname{Bin} A=\{0.0,0.1,0.4,0.9,1.0\} ;$
- $\mathrm{BinB}=\{0.0,0.2,0.4,0.8,1.0\} ;$
- $\mathrm{BinC}=\{0.0,0.3,0.4,0.7,1.0\}$;

For three different SPHEROCITY percentiles for JETTY events

- BinApc= \{0.0,10.0,40.0,90.0,100.0\};
- BinBpc= \{0.0,20.0,40.0,80.0,100.0\};
- $\operatorname{BinCpc}=\{0.0,30.0,40.0,70.0,100.0\} ;$

For three different SPHEROCITY binnings for ISOTROPIC events

- $\operatorname{BinA}=\{0.0,0.1,0.4,0.9,1.0\} ;$
- $\operatorname{BinB}=\{0.0,0.2,0.4,0.8,1.0\} ;$
- $\operatorname{BinC}=\{0.0,0.3,0.4,0.7,1.0\} ;$

For three different SPHEROCITY percentiles for ISOTROPIC events

- BinApc= \{0.0,10.0,40.0,90.0,100.0\};
- BinBpc= \{0.0,20.0,40.0,80.0,100.0\};
- BinCpc= \{0.0,30.0,40.0,70.0,100.0\};

For three different SPHERICITY binnings for JETTY events

- $\operatorname{Bin} A=\{0.0,0.1,0.4,0.9,1.0\} ;$
- $\mathrm{BinB}=\{0.0,0.2,0.4,0.8,1.0\} ;$
- $\mathrm{BinC}=\{0.0,0.3,0.4,0.7,1.0\}$;

For three different SPHERICITY percentiles for JETTY events

- $\operatorname{BinApc=}=\{0.0,10.0,40.0,90.0,100.0\} ;$
- BinBpc= \{0.0,20.0,40.0,80.0,100.0\};
- $\operatorname{BinCpc}=\{0.0,30.0,40.0,70.0,100.0\} ;$

 percentiles

For three different SPHERICITY binnings for ISOTROPIC events

- $\operatorname{BinA}=\{0.0,0.1,0.4,0.9,1.0\} ;$
- $\operatorname{BinB}=\{0.0,0.2,0.4,0.8,1.0\} ;$
- $\mathrm{BinC}=\{0.0,0.3,0.4,0.7,1.0\} ;$

 for small binning

For three different SPHERICITY percentiles for ISOTROPIC events

- BinApc= \{0.0,10.0,40.0,90.0,100.0\};
- BinBpc= \{0.0,20.0,40.0,80.0,100.0\};
- BinCpc= \{0.0,30.0,40.0,70.0,100.0\};

