

NLO QCD OBSERVABLES IN 4D THROUGH THE LOOP-TREE DUALITY

Roger J. Hernández Pinto Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa

in collaboration with: F. Driencourt-Mangin, G. F. R. Sborlini and G. Rodrigo

Reunión General de la Red FAE Pachuca, Hidalgo, November 10th, 2016

LOOP-TREE DUALITY

• Massive one-loop scalar integrals are,

 where the +i0 prescription establishes that particles are going forward in time. The solution of the integrals are known by the Cauchy residues theorem.

However, by using advanced propagators,

• LTD at one loop establishes then

$$L^{(1)}(p_1, \cdots, p_N) = -\sum_{\ell_1} \int_{\ell_1} \tilde{\delta}(q_i) \prod_{\substack{j=1\\ j \neq i}}^N G_D(q_i; q_j)$$

where Feynman propagators are transformed to dual propagators.

$$G_D(q_i; q_j) = \frac{1}{q_j^2 - m_j^2 - i0\eta \cdot (q_j - q_i)}$$

- $\tilde{\delta}(q_i) = 2\pi i \theta(q_{i,0}) \delta(q_i^2 m_i^2)$ and sets internal lines on-shell and in the positive energy mode.
- LTD modify the +i0 prescription, instead of having multiple cuts like in the Feynman Tree Theorem.
- η^{μ} is a future-like vector, for simplicity we take $\eta^{\mu} = (1, 0)$. In fact, the only relevance is the sign in the prescription.

NUMERICAL IMPLEMENTATION

- Faster computations are needed for the Montecarlo simulations for the LHC observables.
- Using LTD the standard methods become time consuming
- (S. Buchta, et al. , arXiv: 1510.00187)

	Rank	Tensor Pentagon	Real Part	Imaginary Part	Time [s]
P16	2	LoopTools	$-1.86472 imes 10^{-8}$		
		SecDec	$-1.86471(2) imes 10^{-8}$		45
		LTD	$-1.86462(26) imes 10^{-8}$		1
P17	3	LoopTools	$1.74828 imes 10^{-3}$		
		SecDec	$1.74828(17) imes 10^{-3}$		550
		LTD	$1.74808(283) imes 10^{-3}$		1
P18	2	LoopTools	$-1.68298 imes 10^{-6}$	$+i \ 1.98303 imes 10^{-6}$	
		SecDec	$-1.68307(56) imes 10^{-6}$	$+i \ 1.98279(90) imes 10^{-6}$	66
		LTD	$-1.68298(74) \times 10^{-6}$	$+i \ 1.98299(74) imes 10^{-6}$	36
P19	3	LoopTools	$-8.34718 imes 10^{-2}$	$+i \ 1.10217 imes 10^{-2}$	
		SecDec	$-8.33284(829) imes 10^{-2}$	$+i \ 1.10232(107) imes 10^{-2}$	1501
		LTD	$-8.34829(757) \times 10^{-2}$	$+i \ 1.10119(757) imes 10^{-2}$	38

4

	Rank	Tensor Hexagon	Real Part	Imaginary Part	Time[s]
P20	1	SecDec	$-1.21585(12) \times 10^{-15}$		36
		LTD	$-1.21552(354) \times 10^{-15}$		6
P21	3	SecDec	$4.46117(37) \times 10^{-9}$		5498
		LTD	$4.461369(3) imes 10^{-9}$		11
P22	1	SecDec	$1.01359(23) \times 10^{-15}$	$+i \ 2.68657(26) \times 10^{-15}$	33
		LTD	$1.01345(130) imes 10^{-15}$	$+i \ 2.68633(130) \times 10^{-15}$	72
P23	2	SecDec	$2.45315(24) imes 10^{-12}$	$-i \ 2.06087(20) \times 10^{-12}$	337
		LTD	$2.45273(727) imes 10^{-12}$	$-i \ 2.06202(727) \times 10^{-12}$	75
P24	3	SecDec	$-2.07531(19) \times 10^{-6}$	$+i 6.97158(56) \times 10^{-7}$	14280
		LTD	$-2.07526(8) imes 10^{-6}$	$+i \ 6.97192(8) \times 10^{-7}$	85

- This results shows have been implemented for several data points for tensor pentagons and hexagons.
- Integrals considering massive internal lines were computed numerically.
- The results using LTD are, in some cases, four order of magnitudes faster than SecDec.
- What about in a physical process ?

AT CROSS SECTION LEVEL

- A cross section is always finite at all orders in pQCD.
- Diagramatically:

• OBJECTIVE: Apply the LTD for matching the virtual and the real contributions at integrand level at NLO where the integrand should not have divergences.

IR REGULARISATION

- Let's define real and virtual cross sections as, $\tilde{\sigma}_{i,R} = \sigma_0^{-1} 2 \operatorname{Re} \int d\Phi_{1\to3} \langle \mathcal{M}_{2r}^{(0)} | \mathcal{M}_{1r}^{(0)} \rangle \theta(y'_{jr} - y'_{ir})$ $\tilde{\sigma}_{i,V} = \sigma_0^{-1} 2 \operatorname{Re} \int d\Phi_{1\to2} \langle \mathcal{M}^{(0)} | \mathcal{M}_i^{(1)} \rangle \theta(y'_{jr} - y'_{ir})$
- where $\langle \mathcal{M}^{(0)} | \mathcal{M}^{(1)}_i \rangle = -g^4 s_{12} I_i$ $y'_{ir} = \frac{s_{12}}{s'_{ir}}$ $\langle \mathcal{M}^{(0)}_{2r} | \mathcal{M}^{(0)}_{1r} \rangle = g^4 s_{12} / (s'_{1r} s'_{2r})$
- Momentum conservation: $p_1 + p_2 = p'_1 + p'_2 + p'_r$

- Claim: $\tilde{\sigma}_i = \tilde{\sigma}_{i,V} + \tilde{\sigma}_{i,R}$ allows a 4-dimensional representation at the integrand level.
- Building the mapping for the condition $y'_{1r} < y'_{2r}$: $p'^{\mu}_{r} = q^{\mu}_{1}$ • $p'^{\mu}_{1} = p^{\mu}_{1} - q^{\mu}_{1} + \alpha_{1}p^{\mu}_{2}$ $p'^{\mu}_{2} = (1 - \alpha_{1})p^{\mu}_{2}$ $q_{1} = \ell + p_{1}$
- and a similar mapping for $\,y_{1r}^\prime > y_{2r}^\prime$. The integral regions are

 $\tilde{\sigma}_1 = \mathcal{O}(\epsilon)$ $\tilde{\sigma}_2 = -c_{\Gamma} \frac{g^2}{s_{12}} \frac{\pi^2}{6} + \mathcal{O}(\epsilon)$ $\bar{\sigma}_V = c_{\Gamma} \frac{g^2}{s_{12}} \frac{\pi^2}{6} + \mathcal{O}(\epsilon)$

UV RENORMALISATION

- UV renormalisation requires local cancellation of divergences.
- In general, counterterms are obtained by expanding the propagator around a UV propagator

$$G_F(q_i) = \frac{1}{q_{UV}^2 - \mu_{UV}^2 + i0} + \cdots, \qquad q_{UV} = \ell + k_{UV}$$

• For the bubble integral, the counterterm is

$$I_{UV}^{cnt} = \int_{\ell} \frac{1}{(q_{UV}^2 - \mu_{UV}^2 + \imath 0)^2} \prod_{l \in \mathcal{D}} I_{UV}^{cnt} = \int_{\ell} \frac{\delta(q_{UV})}{2(q_{UV,0}^{(+)})^2} q_{UV,0}^{(+)} = \sqrt{\mathbf{q}_{UV}^2 + \mu_{UV}^2 - \imath \mathbf{q}_{UV}^2}$$

• 4 dimensional representation of the renormalised bubble integral is,

$$\begin{split} \mathcal{L}^{(1,R)} &= L^{(1)}(p,-p) - I_{UV}^{cnt} \\ &= -4 \int d[\xi] d[v] \left[\frac{\xi}{1 - 2\epsilon + i0} + \frac{\xi}{1 + 2\xi} + \frac{\xi^2}{2(\xi^2 + m_{UV}^2)^{3/2}} \right] \\ &= \frac{1}{4\pi^2} \left[-\log\left(-\frac{p^2}{\mu_{UV}^2} - i0\right) + 2 \right] + \mathcal{O}(\epsilon) \end{split}$$

• the integration regions corresponds to hyperboloids

 ξ_{\perp}

L

 Physical interpretation of renormalisation scale: Avoid the intersection of hyperboloids. Thus

$$\mu_{UV} = Q/2$$

$\gamma^* \to q \bar{q}$ at NLO IN QCD

• In this well known process, the Feynman diagrams are

- where the process add more structure to the integrals. In general, virtual and real corrections have numerators.
- In this case, for the virtual correction is given by,

$$\langle \mathcal{M}_{q\bar{q}}^{(0)} | \mathcal{M}_{q\bar{q}}^{(1)} \rangle = g_{\rm S}^2 C_F | \mathcal{M}_{q\bar{q}}^{(0)} |^2 \frac{4}{s_{12}} \int_{\ell} \left(\prod_{i=1}^3 G_F(q_i) \right)$$

$$\times \epsilon \left[(2+\epsilon)(q_2 \cdot p_1)(q_3 \cdot p_2) - \epsilon \left((q_2 \cdot p_2)(q_3 \cdot p_1) + \frac{s_{12}}{2}(q_2 \cdot q_3) \right) \right]$$

• and for the real correction is,

$$\sigma_R^{(1)} = \sigma^{(0)} \frac{(4\pi)^{\epsilon-2}}{\Gamma(1-\epsilon)} g_{\rm S}^2 C_F \left(\frac{s_{12}}{\mu^2}\right)^{-\epsilon} \int_0^1 dy'_{1r} \int_0^{1-y'_{1r}} dy'_{2r} (y'_{1r} y'_{2r} y'_{12})^{-\epsilon}$$

$$\times \left[4 \left(\frac{y_{12}'}{y_{1r}' y_{2r}'} - \epsilon \right) + 2(1 - \epsilon) \left(\frac{y_{2r}'}{y_{1r}'} + \frac{y_{1r}'}{y_{2r}'} \right) \right]$$

• Using DREG, the result is,

$$\sigma_{V}^{(1)} = \sigma^{(0)} c_{\Gamma} g_{\rm S}^{2} C_{F} \left(\frac{s_{12}}{\mu^{2}}\right)^{-\epsilon} \left[-\frac{4}{\epsilon^{2}} - \frac{6}{\epsilon} - 16 + 2\pi^{2} + \mathcal{O}(\epsilon)\right]$$
$$\sigma_{R}^{(1)} = \sigma^{(0)} c_{\Gamma} g_{\rm S}^{2} C_{F} \left(\frac{s_{12}}{\mu^{2}}\right)^{-\epsilon} \left[\frac{4}{\epsilon^{2}} + \frac{6}{\epsilon} + 19 - 2\pi^{2} + \mathcal{O}(\epsilon)\right]$$

• Then,

$$\sigma = \sigma^{(0)} \left(1 + 3C_F \frac{\alpha_{\rm S}}{4\pi} + \mathcal{O}(\alpha_{\rm S}^2) \right)$$

Remarks:

- There is no need of tensor reduction, no need of Gram determinants.
- Two point function of massless particles are usually ignored because is scaleless.
- In fact, this integral is zero because IR and UV poles cancels.
- In the LTD, there is an identification of IR and UV regions, therefore it has to be consider at the integrand level.

• Following the procedure described, it is possible to find 4dimensional representations for the cross sections, resulting:

$$\begin{aligned} \widetilde{\sigma}_{1}^{(1)} &= \sigma^{(0)} \frac{\alpha_{S}}{4\pi} C_{F} \int_{0}^{1} d\xi_{1,0} \int_{0}^{1/2} dv_{1} \, 4 \, \mathcal{R}_{1}(\xi_{1,0}, v_{1}) \left[2 \left(\xi_{1,0} - (1 - v_{1})^{-1} \right) - \frac{\xi_{1,0}(1 - \xi_{1,0})}{(1 - (1 - v_{1}) \, \xi_{1,0})^{2}} \right] \\ \widetilde{\sigma}_{2}^{(1)} &= \sigma^{(0)} \frac{\alpha_{S}}{4\pi} C_{F} \int_{0}^{1} d\xi_{2,0} \int_{0}^{1} dv_{2} \, 2 \, \mathcal{R}_{2}(\xi_{2,0}, v_{2}) \, (1 - v_{2})^{-1} \left[\frac{2 \, v_{2} \, \xi_{2,0} \left(\xi_{2,0}(1 - v_{2}) - 1 \right)}{1 - \xi_{2,0}} \right] \\ &- 1 + v_{2} \, \xi_{2,0} + \frac{1}{1 - v_{2} \, \xi_{2,0}} \left(\frac{(1 - \xi_{2,0})^{2}}{(1 - v_{2} \, \xi_{2,0})^{2}} + \xi_{2,0}^{2} \right) \right], \end{aligned}$$

$$\begin{split} \overline{\sigma}_{\mathrm{V}}^{(1)} &= \sigma^{(0)} \, \frac{\alpha_S}{4\pi} \, C_F \, \int_0^\infty d\xi \, \int_0^1 dv \left\{ -2 \, \left(1 - \mathcal{R}_1(\xi, v)\right) \, v^{-1} (1 - v)^{-1} \, \frac{\xi^2 (1 - 2v)^2 + 1}{\sqrt{(1 + \xi)^2 - 4v \, \xi}} \right. \\ &+ 2 \, \left(1 - \mathcal{R}_2(\xi, v)\right) \, \left(1 - v\right)^{-1} \, \left[2 \, v \, \xi \, \left(\xi (1 - v) - 1\right) \left(\frac{1}{1 - \xi + i0} + i \pi \delta (1 - \xi) \right) - 1 + v \, \xi \right] \\ &+ 2 \, v^{-1} \left(\frac{\xi (1 - v) (\xi (1 - 2v) - 1)}{1 + \xi} + 1 \right) - \frac{(1 - 2v) \, \xi^3 \left(12 - 7m_{\mathrm{UV}}^2 - 4\xi^2\right)}{(\xi^2 + m_{\mathrm{UV}}^2)^{5/2}} \\ &- \frac{2 \, \xi^2 (m_{\mathrm{UV}}^2 + 4\xi^2 (1 - 6v(1 - v)))}{(\xi^2 + m_{\mathrm{UV}}^2)^{5/2}} \right\}, \end{split}$$

• This expressions can be integrated analytically, resulting:

$$\tilde{\sigma}_{1}^{(1)} = \sigma^{(0)} \frac{\alpha_{\rm S}}{4\pi} C_F \left(19 - 32 \log(2) \right),$$

$$\tilde{\sigma}_{2}^{(1)} = \sigma^{(0)} \frac{\alpha_{\rm S}}{4\pi} C_F \left(-\frac{11}{2} + 8 \log(2) - \frac{\pi^2}{3} \right),$$

$$\bar{\sigma}_{V}^{(1)} = \sigma^{(0)} \frac{\alpha_{\rm S}}{4\pi} C_F \left(-\frac{21}{2} + 24 \log(2) + \frac{\pi^2}{3} \right).$$

• Thus:
$$\tilde{\sigma}_1^{(1)} + \tilde{\sigma}_2^{(1)} + \bar{\sigma}_V^{(1)} = \sigma^{(0)} 3C_F \frac{\alpha_S}{4\pi}$$

 Computation of multi-legs and NNLO corrections are doable within the LTD.

CONCLUSIONS

- New methods for computing higher order corrections are needed for upcoming LHC observables.
- Mapping of momenta between real and virtual corrections permits to cancel soft and final-state collinear singularities.
- Fully local cancellation of IR and UV divergences through the LTD.
- LTD allows to build an algorithm for computing 4-dimensional representations of NLO cross sections.
- Extension of the LTD at NNLO and multi-leg processes is on the way.

