NLO QCD OBSERVABLES

IN 4D THROUGH THE

LOOP-TREE DUALITY

Roger J. Hernández Pinto
Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Sinaloa
in collaboration with: F. Driencourt-Mangin, G. F. R. Sborlini and G. Rodrigo
Reunión General de la Red FAE
Pachuca, Hidalgo, November I Oth, 2016

LOOP-TREE DUALITY

- Massive one-loop scalar integrals are,

$$
=-\imath \int \frac{d^{d} q}{(2 \pi)^{d}} \prod_{i=1}^{N} \frac{1}{q_{i}^{2}-m_{i}^{2}+\imath 0}
$$

- where the $+i 0$ prescription establishes that particles are going forward in time.
- The solution of the integrals are known by the Cauchy residues theorem.

- However, by using advanced propagators,

- LTD at one loop establishes then

$$
L^{(1)}\left(p_{1}, \cdots, p_{N}\right)=-\sum \int_{\ell_{1}} \tilde{\delta}\left(q_{i}\right) \prod_{\substack{j=1 \\ j \neq i}}^{N} G_{D}\left(q_{i} ; q_{j}\right)
$$

- where Feynman propagators are transformed to dual propagators.

$$
G_{D}\left(q_{i} ; q_{j}\right)=\frac{1}{q_{j}^{2}-m_{j}^{2}-i 0 \eta \cdot\left(q_{j}-q_{i}\right)}
$$

- $\tilde{\delta}\left(q_{i}\right)=2 \pi i \theta\left(q_{i, 0}\right) \delta\left(q_{i}^{2}-m_{i}^{2}\right)$ and sets internal lines on-shell and in the positive energy mode.
- LTD modify the $+i 0$ prescription, instead of having multiple cuts like in the Feynman Tree Theorem.
- η^{μ} is a future-like vector, for simplicity we take $\eta^{\mu}=(1, \mathbf{0})$. In fact, the only relevance is the sign in the prescription.

NUMERICAL IMPLEMENTATION

- Faster computations are needed for the Montecarlo simulations for the LHC observables.
- Using LTD the standard methods become time consuming
- (S. Buchta, et al. , arXiv: $1510.00 \mid 87$)

	Rank	Tensor Pentagon	Real Part	Imaginary Part	Time $[\mathrm{s}]$
P16	2	LoopTools	-1.86472×10^{-8}		45
		SecDec	$-1.86471(2) \times 10^{-8}$		1
		LTD	$-1.86462(26) \times 10^{-8}$		550
P17	3	LoopTools	1.74828×10^{-3}		1
		SecDec	$1.74828(17) \times 10^{-3}$		
		LTD	$1.74808(283) \times 10^{-3}$		66
P18	2	LoopTools	-1.68298×10^{-6}	$+i 1.98303 \times 10^{-6}$	
		SecDec	$-1.68307(56) \times 10^{-6}$	$+i 1.98279(90) \times 10^{-6}$	66
		LTD	$-1.68298(74) \times 10^{-6}$	$+i 1.98299(74) \times 10^{-6}$	36
P19	3	LoopTools	-8.34718×10^{-2}	$+i 1.10217 \times 10^{-2}$	
		SecDec	$-8.33284(829) \times 10^{-2}$	$+i 1.10232(107) \times 10^{-2}$	1501
		LTD	$-8.34829(757) \times 10^{-2}$	$+i 1.10119(757) \times 10^{-2}$	38

	Rank	Tensor Hexagon	Real Part	Imaginary Part	Time[s]
P20	1	SecDec	$-1.21585(12) \times 10^{-15}$		36
		LTD	$-1.21552(354) \times 10^{-15}$		6
P21	3	SecDec	$4.46117(37) \times 10^{-9}$		5498
		LTD	$4.461369(3) \times 10^{-9}$		11
P22	1	SecDec	$1.01359(23) \times 10^{-15}$	$+i 2.68657(26) \times 10^{-15}$	33
		LTD	$1.01345(130) \times 10^{-15}$	$+i 2.68633(130) \times 10^{-15}$	72
P23	2	SecDec	$2.45315(24) \times 10^{-12}$	$-i 2.06087(20) \times 10^{-12}$	337
		LTD	$2.45273(727) \times 10^{-12}$	$-i 2.06202(727) \times 10^{-12}$	75
P24	3	SecDec	$-2.07531(19) \times 10^{-6}$	$+i 6.97158(56) \times 10^{-7}$	14280
		LTD	$-2.07526(8) \times 10^{-6}$	$+i 6.97192(8) \times 10^{-7}$	85

- This results shows have been implemented for several data points for tensor pentagons and hexagons.
- Integrals considering massive internal lines were computed numerically.
- The results using LTD are, in some cases, four order of magnitudes faster than SecDec.
- What about in a physical process ?

AT CROSS SECTION LEVEL

- A cross section is always finite at all orders in pQCD.
- Diagramatically:

- OBJECTIVE: Apply the LTD for matching the virtual and the real contributions at integrand level at NLO where the integrand should not have divergences.

IR REGULARISATION

- Let's define real and virtual cross sections as,

$$
\begin{aligned}
& \tilde{\sigma}_{i, R}=\sigma_{0}^{-1} 2 \operatorname{Re} \int d \Phi_{1 \rightarrow 3}\left\langle\mathcal{M}_{2 r}^{(0)} \mid \mathcal{M}_{1 r}^{(0)}\right\rangle \theta\left(y_{j r}^{\prime}-y_{i r}^{\prime}\right) \\
& \tilde{\sigma}_{i, V}=\sigma_{0}^{-1} 2 \operatorname{Re} \int d \Phi_{1 \rightarrow 2}\left\langle\mathcal{M}^{(0)} \mid \mathcal{M}_{i}^{(1)}\right\rangle \theta\left(y_{j r}^{\prime}-y_{i r}^{\prime}\right)
\end{aligned}
$$

- where

$$
\begin{array}{ll}
\left\langle\mathcal{M}^{(0)} \mid \mathcal{M}_{i}^{(1)}\right\rangle=-g^{4} s_{12} I_{i} & y_{i r}^{\prime}=\frac{s_{12}}{s_{i r}^{\prime}} \\
\left\langle\mathcal{M}_{2 r}^{(0)} \mid \mathcal{M}_{1 r}^{(0)}\right\rangle=g^{4} s_{12} /\left(s_{1 r}^{\prime} s_{2 r}^{\prime}\right) &
\end{array}
$$

- Momentum conservation: $p_{1}+p_{2}=p_{1}^{\prime}+p_{2}^{\prime}+p_{r}^{\prime}$
- Claim: $\tilde{\sigma}_{i}=\tilde{\sigma}_{i, V}+\tilde{\sigma}_{i, R}$ allows a 4-dimensional representation at the integrand level.
- Building the mapping for the condition $y_{1 r}^{\prime}<y_{2 r}^{\prime}$:

$$
\begin{array}{rlrl}
p_{r}^{\prime \mu} & =q_{1}^{\mu} & \alpha_{1} & =\frac{q_{3}^{2}}{2 q_{3} \cdot p_{2}} \\
p_{1}^{\prime \mu} & =p_{1}^{\mu}-q_{1}^{\mu}+\alpha_{1} p_{2}^{\mu} & q_{1} & =\ell+p_{1} \\
p_{2}^{\prime \mu} & =\left(1-\alpha_{1}\right) p_{2}^{\mu} &
\end{array}
$$

- and a similar mapping for $y_{1 r}^{\prime}>y_{2 r}^{\prime}$. The integral regions are

$$
\begin{aligned}
\tilde{\sigma}_{1} & =\mathcal{O}(\epsilon) \\
\tilde{\sigma}_{2} & =-c_{\Gamma} \frac{g^{2}}{s_{12}} \frac{\pi^{2}}{6}+\mathcal{O}(\epsilon) \\
\bar{\sigma}_{V} & =c_{\Gamma} \frac{g^{2}}{s_{12}} \frac{\pi^{2}}{6}+\mathcal{O}(\epsilon)
\end{aligned}
$$

UV RENORMALISATION

- UV renormalisation requires local cancellation of divergences.
- In general, counterterms are obtained by expanding the propagator around a UV propagator

$$
G_{F}\left(q_{i}\right)=\frac{1}{q_{U V}^{2}-\mu_{U V}^{2}+\imath 0}+\cdots, \quad q_{U V}=\ell+k_{U V}
$$

- For the bubble integral, the counterterm is

$$
I_{U V}^{c n t}=\int_{\ell} \frac{1}{\left(q_{U V}^{2}-\mu_{U V}^{2}+\imath 0\right)^{2}} \underbrace{\text { LTD }^{I_{U V}^{c n t}}=\int_{\ell} \frac{\tilde{\delta}\left(q_{U V}\right)}{2\left(q_{U V, 0}^{(+)}\right)^{2}}} \begin{aligned}
& q_{U V, 0}^{(+)}=\sqrt{\mathbf{q}_{U V}^{2}+\mu_{U V}^{2}-\imath 0}
\end{aligned}
$$

- 4 dimensional representation of the renormalised bubble integral is,

$$
\begin{aligned}
L^{(1, R)} & =L^{(1)}(p,-p)-I_{U V}^{c n t} \\
& =-4 \int d[\xi] d[v]\left[\frac{\xi}{1-2 \epsilon+\imath 0}+\frac{\xi}{1+2 \xi}+\frac{\xi^{2}}{2\left(\xi^{2}+m_{U V}^{2}\right)^{3 / 2}}\right] \\
& =\frac{1}{4 \pi^{2}}\left[-\log \left(-\frac{p^{2}}{\mu_{U V}^{2}}-\imath 0\right)+2\right]+\mathcal{O}(\epsilon)
\end{aligned}
$$

- the integration regions corresponds to hyperboloids

- Physical interpretation of renormalisation scale: Avoid the intersection of hyperboloids.
Thus

$$
\mu_{U V}=Q / 2
$$

$\gamma^{*} \rightarrow q \bar{q}$ AT NEO IN OCD

- In this well known process, the Feynman diagrams are

- where the process add more structure to the integrals. In general, virtual and real corrections have numerators.
- In this case, for the virtual correction is given by,

$$
\begin{aligned}
\left\langle\mathcal{M}_{q \bar{q}}^{(0)} \mid \mathcal{M}_{q \bar{q}}^{(1)}\right\rangle & =g_{\mathrm{S}}^{2} C_{F}\left|\mathcal{M}_{q \bar{q}}^{(0)}\right|^{2} \frac{4}{s_{12}} \int_{\ell}\left(\prod_{i=1}^{3} G_{F}\left(q_{i}\right)\right) \\
& \times \epsilon\left[(2+\epsilon)\left(q_{2} \cdot p_{1}\right)\left(q_{3} \cdot p_{2}\right)-\epsilon\left(\left(q_{2} \cdot p_{2}\right)\left(q_{3} \cdot p_{1}\right)+\frac{s_{12}}{2}\left(q_{2} \cdot q_{3}\right)\right)\right]
\end{aligned}
$$

- and for the real correction is,

$$
\begin{aligned}
\sigma_{R}^{(1)} & =\sigma^{(0)} \frac{(4 \pi)^{\epsilon-2}}{\Gamma(1-\epsilon)} g_{\mathrm{S}}^{2} C_{F}\left(\frac{s_{12}}{\mu^{2}}\right)^{-\epsilon} \int_{0}^{1} d y_{1 r}^{\prime} \int_{0}^{1-y_{1 r}^{\prime}} d y_{2 r}^{\prime}\left(y_{1 r}^{\prime} y_{2 r}^{\prime} y_{12}^{\prime}\right)^{-\epsilon} \\
& \times\left[4\left(\frac{y_{12}^{\prime}}{y_{1 r}^{\prime} y_{2 r}^{\prime}}-\epsilon\right)+2(1-\epsilon)\left(\frac{y_{2 r}^{\prime}}{y_{1 r}^{\prime}}+\frac{y_{1 r}^{\prime}}{y_{2 r}^{\prime}}\right)\right]
\end{aligned}
$$

- Using DREG, the result is,

$$
\begin{aligned}
& \sigma_{V}^{(1)}=\sigma^{(0)} c_{\Gamma} g_{\mathrm{S}}^{2} C_{F}\left(\frac{s_{12}}{\mu^{2}}\right)^{-\epsilon}\left[-\frac{4}{\epsilon^{2}}-\frac{6}{\epsilon}-16+2 \pi^{2}+\mathcal{O}(\epsilon)\right] \\
& \sigma_{R}^{(1)}=\sigma^{(0)} c_{\Gamma} g_{\mathrm{S}}^{2} C_{F}\left(\frac{s_{12}}{\mu^{2}}\right)^{-\epsilon}\left[\frac{4}{\epsilon^{2}}+\frac{6}{\epsilon}+19-2 \pi^{2}+\mathcal{O}(\epsilon)\right]
\end{aligned}
$$

- Then,

$$
\sigma=\sigma^{(0)}\left(1+3 C_{F} \frac{\alpha_{\mathrm{S}}}{4 \pi}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2}\right)\right)
$$

Remarks:

- There is no need of tensor reduction, no need of Gram determinants.
- Two point function of massless particles are usually ignored because is scaleless.
- In fact, this integral is zero because IR and UV poles cancels.
- In the LTD, there is an identification of IR and UV regions, therefore it has to be consider at the integrand level.
- Following the procedure described, it is possible to find 4dimensional representations for the cross sections, resulting:

$$
\begin{aligned}
\widetilde{\sigma}_{1}^{(1)}= & \sigma^{(0)} \frac{\alpha_{S}}{4 \pi} C_{F} \int_{0}^{1} d \xi_{1,0} \int_{0}^{1 / 2} d v_{1} 4 \mathcal{R}_{1}\left(\xi_{1,0}, v_{1}\right)\left[2\left(\xi_{1,0}-\left(1-v_{1}\right)^{-1}\right)-\frac{\xi_{1,0}\left(1-\xi_{1,0}\right)}{\left(1-\left(1-v_{1}\right) \xi_{1,0}\right)^{2}}\right], \\
\tilde{\sigma}_{2}^{(1)} & =\sigma^{(0)} \frac{\alpha_{S}}{4 \pi} C_{F} \int_{0}^{1} d \xi_{2,0} \int_{0}^{1} d v_{2} 2 \mathcal{R}_{2}\left(\xi_{2,0}, v_{2}\right)\left(1-v_{2}\right)^{-1}\left[\frac{2 v_{2} \xi_{2,0}\left(\xi_{2,0}\left(1-v_{2}\right)-1\right)}{1-\xi_{2,0}}\right. \\
& \left.-1+v_{2} \xi_{2,0}+\frac{1}{1-v_{2} \xi_{2,0}}\left(\frac{\left(1-\xi_{2,0}\right)^{2}}{\left(1-v_{2} \xi_{2,0}\right)^{2}}+\xi_{2,0}^{2}\right)\right], \\
\bar{\sigma}_{\mathrm{V}}^{(1)} & =\sigma^{(0)} \frac{\alpha_{S}}{4 \pi} C_{F} \int_{0}^{\infty} d \xi \int_{0}^{1} d v\left\{-2\left(1-\mathcal{R}_{1}(\xi, v)\right) v^{-1}(1-v)^{-1} \frac{\xi^{2}(1-2 v)^{2}+1}{\sqrt{(1+\xi)^{2}-4 v \xi}}\right. \\
& +2\left(1-\mathcal{R}_{2}(\xi, v)\right)(1-v)^{-1}\left[2 v \xi(\xi(1-v)-1)\left(\frac{1}{1-\xi+\imath 0}+\imath \pi \delta(1-\xi)\right)-1+v \xi\right] \\
& +2 v^{-1}\left(\frac{\xi(1-v)(\xi(1-2 v)-1)}{1+\xi}+1\right)-\frac{(1-2 v) \xi^{3}\left(12-7 m_{\mathrm{UV}}^{2}-4 \xi^{2}\right)}{\left(\xi^{2}+m_{\mathrm{UV}}^{2}\right)^{5 / 2}} \\
& \left.-\frac{2 \xi^{2}\left(m_{\mathrm{UV}}^{2}+4 \xi^{2}(1-6 v(1-v))\right)}{\left(\xi^{2}+m_{\mathrm{UV}}^{2}\right)^{5 / 2}}\right\},
\end{aligned}
$$

- This expressions can be integrated analytically, resulting:

$$
\begin{aligned}
& \tilde{\sigma}_{1}^{(1)}=\sigma^{(0)} \frac{\alpha_{\mathrm{S}}}{4 \pi} C_{F}(19-32 \log (2)), \\
& \tilde{\sigma}_{2}^{(1)}=\sigma^{(0)} \frac{\alpha_{\mathrm{S}}}{4 \pi} C_{F}\left(-\frac{11}{2}+8 \log (2)-\frac{\pi^{2}}{3}\right), \\
& \bar{\sigma}_{V}^{(1)}=\sigma^{(0)} \frac{\alpha_{\mathrm{S}}}{4 \pi} C_{F}\left(-\frac{21}{2}+24 \log (2)+\frac{\pi^{2}}{3}\right) .
\end{aligned}
$$

- Thus: $\tilde{\sigma}_{1}^{(1)}+\tilde{\sigma}_{2}^{(1)}+\bar{\sigma}_{V}^{(1)}=\sigma^{(0)} 3 C_{F} \frac{\alpha_{\mathrm{S}}}{4 \pi}$
- Computation of multi-legs and NNLO corrections are doable within the LTD.

cONCLUSIONS

- New methods for computing higher order corrections are needed for upcoming LHC observables.
- Mapping of momenta between real and virtual corrections permits to cancel soft and final-state collinear singularities.
- Fully local cancellation of IR and UV divergences through the LTD.
- LTD allows to build an algorithm for computing 4-dimensional representations of NLO cross sections.
- Extension of the LTD at NNLO and multi-leg processes is on the way.

Thanks...

