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LOOP-TREE DUALITY
• Massive one-loop scalar integrals are,

• where the +i0 prescription establishes that particles are 
going forward in time. 
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• The solution of the integrals are known by the 
Cauchy residues theorem.

• However, by using advanced propagators, 
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• LTD at one loop establishes then

• where Feynman propagators are transformed to dual propagators.

•                                                and sets internal lines on-shell and 
in the positive energy mode.

• LTD modify the +i0 prescription, instead of having multiple cuts like 
in the Feynman Tree Theorem.

•      is a future-like vector, for simplicity we take                   . In fact, 
the only relevance is the sign in the prescription.
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• Faster computations are needed for the Montecarlo simulations for the LHC 
observables.

• Using LTD the standard methods become time consuming 
• (S. Buchta, et al. , arXiv:1510.00187)
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NUMERICAL IMPLEMENTATION

https://arxiv.org/abs/1510.00187


• This results shows have been implemented for several data points for tensor 
pentagons and hexagons.

• Integrals considering massive internal lines were computed numerically.

• The results using LTD are, in some cases, four order of magnitudes faster than 
SecDec.

• What about in a physical process ?
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AT CROSS SECTION LEVEL
• A cross section is always finite at all orders in pQCD.

• Diagramatically:

�LO =

�NLO = +

• OBJECTIVE: Apply the LTD for matching the virtual and the real contributions 
at integrand level at NLO where the integrand should not have divergences.
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• Let’s define real and virtual cross sections as,

• where

• Momentum conservation:
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• Claim:                               allows a 4-dimensional representation at 
the integrand level.

• Building the mapping for the condition                   :

•  

• and a similar mapping for                  .  The integral regions are
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UV RENORMALISATION
• UV renormalisation requires local cancellation of divergences.

• In general, counterterms are obtained by expanding the propagator 
around a UV propagator

• For the bubble integral, the counterterm is
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• 4 dimensional representation of the renormalised bubble integral is,

• the integration regions corresponds to hyperboloids 
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• Physical interpretation of 
renormalisation scale: Avoid the 
intersection of hyperboloids. 
Thus

µUV = Q/2
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           AT NLO IN QCD
• In this well known process, the Feynman diagrams are

• where the process add more structure to the integrals. In general, virtual and 
real corrections have numerators.

• In this case, for the virtual correction is given by,
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• and for the real correction is,

• Using DREG, the result is,

• Then,
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• There is no need of tensor reduction, no need of Gram 
determinants.

• Two point function of massless particles are usually ignored 
because is scaleless. 

• In fact, this integral is zero because IR and UV poles 
cancels.

• In the LTD, there is an identification of IR and UV regions, 
therefore it has to be consider at the integrand level.

Remarks:
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• Following the procedure described, it is possible to find 4-
dimensional representations for the cross sections, resulting:
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• This expressions can be integrated analytically, resulting:

• Thus:

• Computation of multi-legs and NNLO corrections are 
doable within the LTD.
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CONCLUSIONS
• New methods for computing higher order corrections are needed for 

upcoming LHC observables.

• Mapping of momenta between real and virtual corrections permits to 
cancel soft and final-state collinear singularities.

• Fully local cancellation of IR and UV divergences through the LTD.

• LTD allows to build an algorithm for computing 4-dimensional 
representations of NLO cross sections.

• Extension of the LTD at NNLO and multi-leg processes is on the way. 
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THANKS…


