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Theoretical physics status

Fundamental physics = GR + QM.

Accurate empirical description.

Theoretically inconsistent.
Need a new theory (QG).




Top down vs. bottom up

e Towards QG: top down vs. bottom up.
e This talk: phenomenological approach.
e Goal: find empirical evidence of new physics.
e We focus on testing Lorentz invariance.

e Typical expectation: need to reach the
Planck scale.

o Effects could appear in low-energy sensitive
experiments.




Lorentz invariance

Lorentz invariance states that all inertial frames are equivalent.

Inertial frames = free-falling and nonrotating (linked by
Lorentz transformations).

Equivalent = same experiments will give same results.

Test: perform the same experiment in different frames.

No preferred (nondynamical) spacetime directions.
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Motivation for LV

.
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Ll is fundamental for both GR and QFT.
LV includes CPT violation®.
Accommodated by most QG candidates (e.g., ST, LQG).

Possible discovery of new interactions.

Clear phenomenology.

!Greenberg PRL 2002



(Idealized) phenomenologists’ workflow

Put bounds

Select

a principle

No violation

Parametrize

Violation

Paradigm
change

e Often, steps 2 and 3 not considered.

e Parametrization serves as a guide for theory and experiment.



Effective field theory

e EFT is useful when the fundamental d.o.f. are unknown.
e Requires knowing the field content and symmetries.

e Field content = standard physics;
symmetries = standard physics without LlI.

e Result: Lagrange density®
L=Lar+ Lsm + Liv.

where L1y contains all possible LV additions to SM + GR.
e Naive expectation: Ly is suppressed by Egw/Ep ~ 10717,

e Terms of every dimensionality (higher dimensions are more
suppressed).

1“Standard Model Extension”: Colladay+Kostelecky PRD 1997; PRD 1998;
Kostelecky PRD 2004;. ..



Example: Free Dirac spinor minimal sector in flat

spacetime

e Minimal = operators of renormalizable dimension:
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e [* and M are the most general matrices (e.g., ms).

e SME coefficients: a,, by, Cuv, dpvs €y s Spvps Huw-



Experiments and bounds

Experiments (partial list)

Accelerator/collider.
Astrophysical observations.
Birefringence/dispersion.
Clock-comparison.

CMB polarization.
Laboratory gravity tests.
Matter interferometry.
Neutrino oscillations.

Particle vs. antiparticle.

Resonant cavities and lasers.

Sidereal /annual variations.

Spin-polarized matter.

No evidence of LV = bounds:

“Data Tables for Lorentz and
CPT Violation”
Kostelecky+Russell RMP (2011),
('16 version: arXiv:0801.0287v9)

e > 150 experimental results.

e Best bounds:
matter ~ 10734 GeV,
photons ~ 1074 GeV



Selfconsistency

Are there theoretical restrictions to rule out LV terms?

In flat spacetime, few interesting tests.

o Field redefinitions: Only some linear combinations of the
coefficient’s components are observable.

Strong evidence that spacetime is not flat.

Curved spacetime tests:

e Field redefinitions.
e Gravitational d.o.f.
e Spacetime boundaries.

e Diffeomorphism invariance.

e Dirac algorithm and Cauchy
problem.



Field redefinitions in curved spacetime

W — e’ shows that aMZ_)’y“¢ is unphysical.

e In flat spacetime it is possible to map the (minkowskian)
coordinates of any point to a vector x*.

e This cannot be done covariantly in curved spacetime (no
global minkowskian coordinates).

e Less field redefinitions = access more coefficients!.
e No need for curvature, only nonminkowskian coordinates?.

e The metric can be redefined = alternative constraints3.

!Kostelecky+Tasson PRD 2011
2Bonder PRD 2013
3Bonder PRD 2015



Gravitational degrees of freedom

e In GR, possible to take the metric and the connection as a
priori dynamically independent variables.

e The action variation w.r.t. the connection yields V,g,, = 0.

e This is known as the Palatini formulation of GR.

e Minimal gravitational LV: L1y = /=g k""" Ry po-

e For the minimal gravitational LV, the standard and Palatini
approaches are equivalent?.

e More general field redefinitions, no practical applications!

e For nonminimal LV, these approaches are inequivalent.

e Lesson: decide the gravitational d.o.f. beforehand.

'Bonder PRD 2015



Spacetime boundaries

e In GR, the metric variation (fixed at the boundaries) modifies
Einstein equations.

e This action can be ‘corrected’ with a Gibbons-Hawking term:
AS — 2/ d®xv/1h| K, b,
boundary

where h,, = g, £ n,n, and K, are the induced metric and
extrinsic curvature of the boundary, respectively.

e In the phenomenological applications of LV, spacetime is
conformally flat, which has boundaries.

e For the minimal gravitational action, add?!
ASiy = j:2/ d3x |h|nung KPP K.
boundary

e There is no ASyy for the nonminimal part!
!Bonder PRD 2015




Diffeomorphism invariance

Nondynamical fields break (active) diffeomorphism invariance.

Here, need to assume the standard gravitational sector.

Well-known: diffeomorphism invariance < V,TH# = 0.
Thus, V, T* # 0, which implies V,,G* # 0.
But that goes against the Bianchi identities!

Conclusion: LV can only be broken spontaneously?.

!Kostelecky PRD 2004



Dirac algorithm and Cauchy problem

e Dirac algorithm: Is there a Hamilton density for which the
evolution respects the constraints?
e Cauchy problem:

o Is the evolution uniquely determined by proper initial data?

e Is the evolution continuous under changes of initial data.

o Are the effects of modifying the initial data in agreement with
spacetime causal structure?
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e These conditions are difficult to verify without specifying the
coefficients dynamics.



Cauchy problem: concrete model

e Focus on a concrete modell:

1

2
L= 2DusDhe — g6t —

7 BB — %(BMB“ — b?)?

o Flat spacetime, complex scalar field ¢ (matter), real vector

field B*.
e B =0,B,—0,B, and D,¢ = 0,0 — ieB,¢
= Ly = —B"J, and no gauge freedom.
e Generalization of the Mexican hat potential, its VEV is
timelike.

e ¢, k, and b are real positive constants.
e Canonical momenta:
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'Bonder+Escobar PRD 2016




Cauchy problem: concrete model

1

m? 1
£ = 3Du6D"" — =09
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Two second-class constraints:

_ .0
X1 = 7,
X2 = 0ir' — kBo(BuB" — b?) + 2eIm(pp).

The Dirac algorithm exhausted without inconsistencies.

The well-known theorems don't apply for these e.o.m.

D.o.f.: B;, 7', ¢, and p (only this initial data needed)
= the initial Bg obtained through the constraints.

e No unique initial Bg = ill-posed Cauchy problem!



Cauchy problem: concrete model

e Example: initially B; =0, 7/ =0, ¢ =0, and p=a € C.
X2 = [Bo(0)? = b?] Bo(0) =0 = Bo(0) = b,0, —b.

o Numerically (k = b/MeV? = e = m/MeV = Re(a)/MeV =
Im(a)/MeV = 1):

By(0)=0 By(0)=-b
oMoV oMev oMV

2| 2| 2 N
1’ 1 1
22 -2 22
4 % 2 + 5 V66107 s . % 5 1661075 s N 4 £ 166107
-1 -1 -1
-2| -2| X -2

where the blue (yellow-dotted) line is for Re¢ (Img).

e ¢ represents matter = physical consequences!

By(0)=b




Cauchy problem: concrete model

Easy fix: change the kinetic term for 5,,.
Other options dependent on the connection and tend to

damage the Cauchy problem for the metric.
Alternatives:

e “Only one measurement”.... per experiment (unlike a
fundamental constant).

e Consider By as a standard d.o.f. (i.e., naive application of
Lagrange's formalism = inequivalent quantizations?, discrete
number of d.o.f.).

e Construct a criteria to choose a special By (e.g., initial energy,
but there are degeneracies).

Longterm goal: study if we can rule out spontaneous LV.




Conclusions

e LV promising way to empirically search for new physics.

o Effective field theory is a robust framework to parametrize LV.
e There are theoretical obstacles, mainly in curved spacetime:

e Explicit LV is inconsistent.
e The Cauchy problem could restrict spontaneous LV.

a principle
Y

Parametrize
all violations

J

No violation

No Violation

Paradigm
change



Gibbons-Hawking term

e In the minimal gravitational LV action-variation:

1
58S O — / d*x/=g(g""s5 + K"P5 )5 Ryuwp”
2/€ M

K

1
= / d4x\/—g(VpVJkp“””)5gM,,
M

1
+= / d3x+/|h|n,(2g"1Pg"V + KkPHYOVY 1 g,
K Jom

e In OM: g, =0 (and §h,, = én* = 0) but n”V ,0g,, # 0.

o Ky = h,V,n, = 0Ky = —hn:6C,7 = 3hn°V,0g,, =
n,(2g"1P g1 £ kPHYONY 5 g, = —O[(2h"Y £ 20,0, KPHY7) Koy, ],

e To cancel the problematic term:

1
AS:/ d>xv/|h| (2R"P £ 20,0, KFP7) K, .
K Joam



Variation under diffeomorphisms

e Nongravitational LV = S = [ d*x\/=gR + 2kSm(g, ¢; k).
e Under a diffeo. assoc. with any w* (of compact sup.):
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where use that the fields ¢ satisfy their e.o.m.,

6g" = L,g" = —2V{#Fw?) and the Bianchi identity.
e Hence, 65 =0 if and only if V,T* = 0.



Dirac method

e Dirac’s algorithm: method to construct the Hamiltonian.

HoH+ug§

L-L(q,q) ’

Discard the
theory

' Inconsistency
p'=dL/dq, (e.g., 0=1)
Valid by fixing u

Successful
theory

H=p'q'-L(q,p)

e May reveal inconsistencies (example: L(q, §) = q).



Cauchy theorems

e Cauchy-Kowalewski requires analytic initial data, which
damages causality.

Theorem

(M, g,..,) globally hyperbolic, V,, any derivative operator. The

following system of n linear equations for n unknown functions
vy ..,V

where Afj Bjj, C; are smooth vector/scalar fields, has a well-posed
Cauchy problem.

e There are more general theorems!

e Most relevant: form of the second-derivative term.

Wald's GR book



