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efectiva

Yuri Bonder

Instituto de Ciencias Nucleares
Universidad Nacional Autónoma de México
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Theoretical physics status

• Fundamental physics = GR + QM.

• Accurate empirical description.

• Theoretically inconsistent.

• Need a new theory (QG).



Top down vs. bottom up

• Towards QG: top down vs. bottom up.

• This talk: phenomenological approach.

• Goal: find empirical evidence of new physics.

• We focus on testing Lorentz invariance.

• Typical expectation: need to reach the
Planck scale.

• Effects could appear in low-energy sensitive
experiments.



Lorentz invariance

• Lorentz invariance states that all inertial frames are equivalent.

• Inertial frames = free-falling and nonrotating (linked by
Lorentz transformations).

• Equivalent = same experiments will give same results.

• Test: perform the same experiment in different frames.

• No preferred (nondynamical) spacetime directions.



Motivation for LV

• LI is fundamental for both GR and QFT.

• LV includes CPT violation1.

• Accommodated by most QG candidates (e.g., ST, LQG).

• Possible discovery of new interactions.

• Clear phenomenology.

1Greenberg PRL 2002



(Idealized) phenomenologists’ workflow

Parametrize
all violations

Select
a principle

Phenomenology

Put bounds

Experiments

Paradigm
change

No violation

ViolationSelf-
consistent?No Yes

• Often, steps 2 and 3 not considered.

• Parametrization serves as a guide for theory and experiment.



Effective field theory

• EFT is useful when the fundamental d.o.f. are unknown.

• Requires knowing the field content and symmetries.

• Field content = standard physics;
symmetries = standard physics without LI.

• Result: Lagrange density1

L = LGR + LSM + LLV.

where LLV contains all possible LV additions to SM + GR.

• Naive expectation: LLV is suppressed by EEW/EP ∼ 10−17.

• Terms of every dimensionality (higher dimensions are more
suppressed).

1“Standard Model Extension”: Colladay+Kostelecký PRD 1997; PRD 1998;
Kostelecký PRD 2004;. . .



Example: Free Dirac spinor minimal sector in flat
spacetime

• Minimal = operators of renormalizable dimension:

L =
i

2
ψ̄Γµ∂µψ −

i

2
(∂µψ̄)Γµψ − ψ̄Mψ,

Γµ = γµ − ηµνcρνγρ − ηµνdρνγ5γ
ρ − ηµνeν

−iηµν f νγ5 −
1

2
ηµνgρσνσ

ρσ,

M = m + im5γ5 + aµγ
µ + bµγ5γ

µ +
1

2
Hµνσ

µν .

• Γµ and M are the most general matrices (e.g., m5).

• SME coefficients: aµ, bµ, cµν , dµν , eµ, f µ, gµνρ,Hµν .



Experiments and bounds

Experiments (partial list)

• Accelerator/collider.

• Astrophysical observations.

• Birefringence/dispersion.

• Clock-comparison.

• CMB polarization.

• Laboratory gravity tests.

• Matter interferometry.

• Neutrino oscillations.

• Particle vs. antiparticle.

• Resonant cavities and lasers.

• Sidereal/annual variations.

• Spin-polarized matter.

No evidence of LV ⇒ bounds:

“Data Tables for Lorentz and
CPT Violation”

Kostelecký+Russell RMP (2011),
(’16 version: arXiv:0801.0287v9)

• > 150 experimental results.

• Best bounds:
matter ∼ 10−34 GeV,
photons ∼ 10−43 GeV



Selfconsistency

• Are there theoretical restrictions to rule out LV terms?

• In flat spacetime, few interesting tests.
• Field redefinitions: Only some linear combinations of the

coefficient’s components are observable.

• Strong evidence that spacetime is not flat.

• Curved spacetime tests:

• Field redefinitions.

• Gravitational d.o.f.

• Spacetime boundaries.

• Diffeomorphism invariance.

• Dirac algorithm and Cauchy
problem.



Field redefinitions in curved spacetime

• ψ → e iaµx
µ
ψ shows that aµψ̄γ

µψ is unphysical.

• In flat spacetime it is possible to map the (minkowskian)
coordinates of any point to a vector xµ.

• This cannot be done covariantly in curved spacetime (no
global minkowskian coordinates).

• Less field redefinitions ⇒ access more coefficients1.

• No need for curvature, only nonminkowskian coordinates2.

• The metric can be redefined ⇒ alternative constraints3.

1Kostelecký+Tasson PRD 2011
2Bonder PRD 2013
3Bonder PRD 2015



Gravitational degrees of freedom

• In GR, possible to take the metric and the connection as a
priori dynamically independent variables.

• The action variation w.r.t. the connection yields ∇µgνρ = 0.

• This is known as the Palatini formulation of GR.

• Minimal gravitational LV: LLV =
√
−gkµνρσRµνρσ.

• For the minimal gravitational LV, the standard and Palatini
approaches are equivalent1.

• More general field redefinitions, no practical applications!

• For nonminimal LV, these approaches are inequivalent.

• Lesson: decide the gravitational d.o.f. beforehand.

1Bonder PRD 2015



Spacetime boundaries

• In GR, the metric variation (fixed at the boundaries) modifies
Einstein equations.

• This action can be ‘corrected’ with a Gibbons-Hawking term:

∆S = 2

∫
boundary

d3x
√
|h|Kµνhµν ,

where hµν = gµν ± nµnν and Kµν are the induced metric and
extrinsic curvature of the boundary, respectively.

• In the phenomenological applications of LV, spacetime is
conformally flat, which has boundaries.

• For the minimal gravitational action, add1

∆SLV = ±2

∫
boundary

d3x
√
|h|nµnσkµνρσKνρ.

• There is no ∆SLV for the nonminimal part!
1Bonder PRD 2015



Diffeomorphism invariance

• Nondynamical fields break (active) diffeomorphism invariance.

• Here, need to assume the standard gravitational sector.

• Well-known: diffeomorphism invariance ⇔ ∇µTµν = 0.

• Thus, ∇µTµν 6= 0, which implies ∇µGµν 6= 0.

• But that goes against the Bianchi identities!

• Conclusion: LV can only be broken spontaneously1.

1Kostelecký PRD 2004



Dirac algorithm and Cauchy problem

• Dirac algorithm: Is there a Hamilton density for which the
evolution respects the constraints?

• Cauchy problem:
• Is the evolution uniquely determined by proper initial data?
• Is the evolution continuous under changes of initial data.
• Are the effects of modifying the initial data in agreement with

spacetime causal structure?

• These conditions are difficult to verify without specifying the
coefficients dynamics.



Cauchy problem: concrete model

• Focus on a concrete model1:

L =
1

2
DµφD

µφ∗ − m2

2
φφ∗ − 1

4
BµνB

µν − κ

4
(BµB

µ − b2)2

• Flat spacetime, complex scalar field φ (matter), real vector
field Bµ.

• Bµν = ∂µBν − ∂νBµ and Dµφ = ∂µφ− ieBµφ
⇒ LLV = −BµJµ and no gauge freedom.

• Generalization of the Mexican hat potential, its VEV is
timelike.

• e, κ, and b are real positive constants.

• Canonical momenta:

π0 =
δL

δ∂0B0
= 0, πi =

δL
δ∂0B i

= B i0,

p =
δL
δ∂0φ

=
1

2
(∂0φ

∗ + ieB0φ
∗) = (p∗)∗.

1Bonder+Escobar PRD 2016



Cauchy problem: concrete model

L =
1

2
DµφD

µφ∗ − m2

2
φφ∗ − 1

4
BµνB

µν − κ

4
(BµB

µ − b2)2

• Two second-class constraints:

χ1 = π0,

χ2 = ∂iπ
i − κB0(BµB

µ − b2) + 2eIm(φp).

• The Dirac algorithm exhausted without inconsistencies.

• The well-known theorems don’t apply for these e.o.m.

• D.o.f.: B i , π
i , φ, and p (only this initial data needed)

⇒ the initial B0 obtained through the constraints.

• No unique initial B0 ⇒ ill-posed Cauchy problem!



Cauchy problem: concrete model

• Example: initially B i = 0, πi = 0, φ = 0, and p = a ∈ C.

χ2 =
[
B0(0)2 − b2

]
B0(0) = 0 ⇒ B0(0) = b, 0,−b.

• Numerically (κ = b/MeV2 = e = m/MeV = Re(a)/MeV =
Im(a)/MeV = 1):
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t/6.6 10-22 s
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where the blue (yellow-dotted) line is for Reφ (Imφ).

• φ represents matter ⇒ physical consequences!



Cauchy problem: concrete model

• Easy fix: change the kinetic term for Bµ.
• Other options dependent on the connection and tend to

damage the Cauchy problem for the metric.
• Alternatives:

• “Only one measurement”.... per experiment (unlike a
fundamental constant).

• Consider B0 as a standard d.o.f. (i.e., naive application of
Lagrange’s formalism ⇒ inequivalent quantizations?, discrete
number of d.o.f.).

• Construct a criteria to choose a special B0 (e.g., initial energy,
but there are degeneracies).

• Longterm goal: study if we can rule out spontaneous LV.



Conclusions

• LV promising way to empirically search for new physics.

• Effective field theory is a robust framework to parametrize LV.

• There are theoretical obstacles, mainly in curved spacetime:
• Explicit LV is inconsistent.
• The Cauchy problem could restrict spontaneous LV.
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Gibbons-Hawking term

• In the minimal gravitational LV action-variation:

δS ⊃ 1

2κ

∫
M
d4x
√
−g(gρµδνσ + kµνρσ)δRµνρ

σ

=
1

κ

∫
M
d4x
√
−g(∇ρ∇σkρµνσ)δgµν

+
1

κ

∫
∂M

d3x
√
|h|nρ(2gµ[ρgν]σ + kρµνσ)∇σδgµν

• In ∂M: δgµν = 0 (and δhµν = δnµ = 0) but nρ∇ρδgµν 6= 0.

• Kµν = hρµ∇ρnν ⇒ δKµν = −hρµnσδCρνσ = 1
2h

ρ
µnσ∇σδgνρ ⇒

nρ(2gµ[ρgν]σ+kρµνσ)∇σδgµν = −δ[(2hµν ± 2nρnσk
ρµνσ)Kµν ],

• To cancel the problematic term:

∆S =
1

κ

∫
∂M

d3x
√
|h| (2hνρ ± 2nµnσk

µνρσ)Kνρ.



Variation under diffeomorphisms

• Nongravitational LV = S =
∫
d4x
√
−gR + 2κSm(g , φ; k).

• Under a diffeo. assoc. with any wµ (of compact sup.):

δS =

∫
d4x

(
δ
√
−gR
δgµν

δgµν + 2κ
δLm
δgµν

δgµν + 2κ
δLEH
δφ

δφ

)
=

∫
d4x (−Gµν + κTµν) (−2∇(µwν))

= 2

∫
d4x (−∇µGµν + κ∇µTµν)wν

= 2κ

∫
d4xwν∇µTµν

where use that the fields φ satisfy their e.o.m.,
δgµν = Lwgµν = −2∇(µwν), and the Bianchi identity.

• Hence, δS = 0 if and only if ∇µTµν = 0.



Dirac method

• Dirac’s algorithm: method to construct the Hamiltonian.

pi=dL/dq'
i

L=L(q
i
,q'

i
)

ξ' = {ξ,H}=0

H → H + u ξ

Outcomes

Successful
theory

New ξ

Valid by fixing u

Constraints?
{ξ} No

Yes

Inconsistency
(e.g., 0=1)

Discard the
theory

H=piq'
i
-L(q

i
,pi)

• May reveal inconsistencies (example: L(q, q̇) = q).



Cauchy theorems

• Cauchy-Kowalewski requires analytic initial data, which
damages causality.

Theorem

(M, gµν) globally hyperbolic, ∇µ any derivative operator. The
following system of n linear equations for n unknown functions
Ψ1, . . . ,Ψn

gµν∇µ∇νΨi + Aµij∇µΨj + BijΨj + Ci = 0,

where Aµij , Bij , Ci are smooth vector/scalar fields, has a well-posed
Cauchy problem.

• There are more general theorems1.

• Most relevant: form of the second-derivative term.

1Wald’s GR book


