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PLAN OF THE TALK

• (1) INTRODUCTION

• (2) RECENT WORK ON LSB

• (3) THE TOPOLOGICAL ORIGIN OF THE INTEGER QUANTUM HALL EFFEC T



RECENT WORK ON LORENTZ SYMMETRY BREAKING

NAMBU MODELS

• The idea here is to relate gauge particles with the Goldstone bosons arising from SLSB

• The simplest case is the abelian Nambu-model

L = −
1

4
FµνF

µν + JµA
µ, AµA

µ = M2nµn
µ

where the constraint is to be solved and substituted in the La grangian. This can be

directly generalized to the non-abelian case.

• The NG bosons are in the components of Aµ which are orthogonal to nµ: 3 DOF.

Completely different from ED.

• The Hamiltonian analysis can be made by solving one field from the constraint and

dealing with the remaining 3 coordinates. In the non-abelian case, generally one

encounters second class contraints and the procedure gets m ore involved.

• We have shown that the NANM model coupled to a conserved current, plus the Gauss

constraints imposed as an initial condition is equivalent t o the SU(N) MGT, thus

generalizing known results for the abelian case.



• Thus LSB becomes unobservable and the original Goldstone mo des can be identified

as the corresponding gauge particles.

• Also we presented a perturbative proof of the equivalence be tween the ANM plus initial

conditions, and QED in the convenient axial gauge, paying at tention to the gauge fixing

procedure.

• Generalization to arbitrary gauge theories defined by havin g only first class constraints

which produce non trivial gauge transformations. The ENM is then defined by an arbitray

constraint upon the gauge theory coordinate variables.

• Work in collaboration with Carlos Escobar Ruiz. [PRD92(2015)025013,

PRD92(2015)025042, preprint Extended Nambu models: their relation to gauge theories

(submitted for publication).



BREIT-WHEELER SCATERING IN THE SME

• Calculate the cross section for the process γ1 + γ2 → e+ + e−, where γ1 is a

photon with very high energy (del orden de 100 TeV) and γ2 is a low energy photon in the

interstellar medium.

• Use the fermion sector of the SME to calculate the cross secti on.

• The cross section has to be further integrated over all the an gles that the low energy

photons from with the incident high energy photon: need to ca lculate in the reference

frame where the directions of those photons form an arbitrar y angle.

• Work in collaboration with S. Ramirez (Master Thesis), J. D. Vergara, Carlos Escobar.

Need some clarifications.



Resultados de Ellis et al. para el CTA

,

La esructura b ásica es
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THE INTEGER QUANTUM HALL EFFECT (IQHE)

• Huge interest in topological aspects of quantum matter, enh anced by the recent

Nobel prize to M. Kosterlitz, D. Haldane and D. J. Thouless.

• ....., Quantum integer Hall effect, Quantum fractionally H all effect, Topological

insulators, etc. etc.

• Microscopic approach (people from condensed matter) and Ef fective field theory

approach (people from high energy ).

• Recent work by A. Martin-Ruiz, L. Urrutia (ICN) and M. Cambia so (UNAB-Santiago)

on the electromagnetic response of topological insulators : [PRD92(2015)125015,

EPL113(2016)6005, PRD93(2016)045022, PRD94(2016)085019.

• Try to give a feeling on how does the basic topology enters in t he simplest case of

the IQHE.

• Require: (a) Basic properties of the IQHE, (b) The Kubo formu la for the

conductivities, (c) The idea of a Berry connection and (d) pu tting all together.



PROPERTIES OF THE IQHE

• ρxx = 0 at the plateaux, B = 2πh̄n
Ne

in the center of the plateaux, ρxy = 2πh̄
e2

1

N
,

N integer. Also σxy = e2

2πh̄
N



THE KUBO FORMULA

• This is a particular case of the linear response theory of a sy stem to a perturbation.

• In this case the perturbation is the electric field E in the direction x and the

response of the system is the current Jx, Jy which determines the conductivity matrix

σ such that J = σE

• The unperturbed Hamiltonian H0 is arbitrary. The perturbation is ∆H = J · A.

We work in a gauge with A0 = 0, so that E = −∂A/∂t . The dimensions of J are

Amp/m2.

• We take E(t) = Ee−iωt, such that A(t) = Ee−iωt/iω with ω → 0 at the

end.

• We work in the interaction picture. The system is in the the gr ound state |0〉 at

t → −∞ and evolves with the operator

U(t) = T exp

(

−
i

h̄

∫ t

−∞

dt′ ∆H(t′)

)

.

• We want to calculate

〈J(t)〉 = 〈0(t)|J(t)|0(t)〉.



• To first order in perturbation theory we get

〈Ji(t)〉 =
1

h̄ω

(
∫ ∞

0

dt′′eiωt′′〈0| [Jj(0), Ji(t
′′)] |0〉

)

Eje
−iωt.

• From here we read

σxy =
1

h̄ω

∫ ∞

0

dteiωt〈0| [Jy(0), Jx(t)] |0〉.

• Recalling that operators evolve according to Ji(t) =eiH0t/h̄Ji(0)e
−iH0t/h̄ it is

possible to rewrite σxy in terms of eigenstates |n〉 of H0 as

σxy = ih̄
∑

n 6=0

[

〈0|Jy(0)|n〉〈n|Jx(0)|0〉 − 〈0|Jx(0)|n〉〈n|Jy(0)|0〉

(En − E0)
2

]

in the limit ω → 0.

• The challenge now is to show how the above result is related to topology , with the

further consequence of its quantization.



• For our purposes it is convenient to associate VH to the flux ΦV = Φy and the

electric field to the flux ΦJ = Φx.

• In this way, the Hall arrangement becomes a torus.



• In order to appreciate the effect of contant solenoidal fluxe s Φ, let us consider the

following situation

• The Hamiltonian is

H =
1

2m

[

−h̄2 1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

+

(

−i
h̄

ρ

∂

∂φ
+

eBr

2
+

eΦ

2πρ

)2
]

.

• The flux produces a local gauge transformation. We can factor it as

Ψ(ρ, φ) → exp

(

ieΦφ

2πh̄

)

Ψ(ρ, φ).

• But the wave function must satisfy periodicity in φ, which requires eΦ
2πh̄

= N . In

other words Φ must be an integer multiple of the quantum of a flux Φ0 = 2πh̄
e

.

• Only under this condition the spectrum remains invariant.



• Next we apply the addition of fluxes to our Hall torus, which we characterize as a

rectangle with sides Lx and Ly , with extremes identified. Here we work in the Landau

gauge Ax = Φx

Lx

, Ay =
Φy

Ly

+ Bx. These define our unperturbed Hamiltonian H0.

• Following the idea of the linear response aproximation, we a dd the following

perturbation in order to identify the resulting currents

∆H = −jx
Φx

Lx

− jy
Φy

Ly

,

Let us notice that in two dimensions j = −env with n the electron density (#/cm2).

The dimension of j is then Amp/m

• The effect of the perturbation upon the ground state of the sy stem Ψ0(Φi) is

|Ψ0(Φi + δΦi)〉 = |Ψ0〉 +
∑

n 6=0

〈n|∆H|Ψ0〉

En − E0

|n〉

= |Ψ0〉 −
∑

i

1

Li

∑

n 6=0

〈n|ji|Ψ0〉

En − E0

|n〉δΦi

|
∂Ψ0

∂Φi

〉 = −
1

Li

∑

n 6=0

〈n|ji|Ψ0〉

En − E0

|n〉, where Ji =
ji

Li



• Substituting in the general expression for σxy we find

σxy = ih̄

(

∂

∂Φy

〈Ψ0|
∂Ψ0

∂Φx

〉 −
∂

∂Φx

〈Ψ0|
∂Ψ0

∂Φy

〉

)

.

• Recalling that to maintain global gauge invariant we requir e that the Φi to be periodic

in terms of the quantum of flux. In this way, the parameter spac e is also a torus which we

denote by T 2
Φ

, which we can parametrize with adimensional angular variab les

θi =
2πΦi

Φ0

, θi ∈ [0, 2π), Φ0 =
2πh̄

e

• After this change of variables, we identify the Berry connec tion Ai and curvature Fij ,

respectively

Ai = 〈Ψ0|
∂Ψ0

∂θi
〉, Fij =

∂Ai

∂θj
−

∂Aj

∂θi
.

• In this way

σxy = −
e2

h̄
Fxy



• The Berry phase is a two-form and thus can be integrated over a two-surface. The

fundamental property is
∮

S

Fij dSij = 2πC, C integer,

for any closed two-surface S. The number C is called the Chern number.

• Taking the average over the previous expression for σxy one obtains

1

(2π)2

∫

dθxdθyσxy = σxy =
1

(2π)2

∫

dθxdθy

(

e2

h̄

)

Fxy = −
e2

2πh̄
C.

which shows the topological origin of the IQHE quantization .

• This is not the whole story, there are many relevant features which I did not consider,

for example: (1) what is the relevance of the edge states, (2) why is the result independent

of the impurities, (3) why the plateaux are extended in some r ange of the magnetic field,

(4) which is the effective theory that describes the IQHE, et c.


