

Supported in part by the European Commission under Capacities 7th Framework Programme project EuCARD-2, grant agreement 312453.

Optimized Monochromatization for Direct Higgs Production at the FCCe+e-

Holiday Inn Pachuca 2016 Pachuca, Hidalgo, 101116

0

Motivation

Motivations

- Questions still unanswered about Higgs boson properties
- Post-LHC era requirements
- Upcoming beamstrahlung effects
- FCC proposal opportunity
- Monochromatization for high center-of-mass energy resolution

Objectives

- Present a review of the field of accelerator physics and future proposals
- Characterize beamstrahlung at the FCCe+e-
- Obtain the self-consistent energy spread and self-consistent emittance
- Optimize the IP parameters to produce opposite dispersion
- Develop a monochromatization scheme for the FCCe+e-
- Describe the modification to the lattice design and the final focusing system

Accelerator Physics

- Particles are injected into a vacuum chamber until the beam is stored.
- The guide field provides focusing capabilities driving particles toward the ideal designed.
- Stored particles loss energy by synchrotron radiation, compensated in average by the RFS.
- The periodic accelerating field collects the particles into circulating bunches.
- Energy loss by synchrotron radiation leads into damping of all oscillation amplitudes.
- Amplitude excitation occurs as an effect of the quantum nature of radiation.
- A balance between radiation damping and quantum excitation is reached.

Monochromatization principle A "simple explanation"

Standard collision Dispersion has the same sign in the IP

$$e^{-} \xrightarrow{E + \Delta E} \xleftarrow{E + \Delta E} e^{+} \xrightarrow{E - \Delta E} e^{+}$$

$$w = 2(E_0 + \epsilon)$$

Monochromatization principle A "simple explanation"

Standard collision Dispersion has the same sign in the IP

$$e^{-} \xrightarrow{E + \Delta E} \xleftarrow{E + \Delta E} e^{+} \xrightarrow{E - \Delta E} e^{+} \xrightarrow{w = 2(E_0 + \epsilon)}$$

Monochromatization Dispersion has opposite sign in the IP

$$e^{-} \xrightarrow{E + \Delta E} \xleftarrow{E - \Delta E} e^{+}$$

 $\xrightarrow{E - \Delta E} \xleftarrow{E} e^{+}$
 $w = 2E_0 + 0(\epsilon)^2$

After doing this we get an **Enhancement** of **energy resolution**, and sometimes increase of the relative frequency of the events at the centre of of the distribution.

- A special arrangement of elements or modification of the available ones is required
- In the context of this proposal, exploration of the current FCCee design is needed
- In literature, insertions to implement this idea is known as monochromator

Monochromatization Dispersion has opposite sign in the IP

$$e^{-} \xrightarrow{E + \Delta E} \xleftarrow{E - \Delta E} e^{+}$$

 $\xrightarrow{E - \Delta E} \xleftarrow{E} e^{+}$
 $w = 2E_0 + 0(\epsilon)^2$

Hill Differential Education

$$x'' + K(s)x = 0$$
 $y'' - K(s)y = 0$, $K(s) \equiv \frac{1}{(B\rho)} \left(\frac{\partial B_y}{\partial x}\right)(s)$ $K(s+C) = K(s)$

Ansatz

$$x(s) = A\omega(s)\cos(\phi(x) + \phi_0)$$

Courant-Snyder Parameters

$$\beta(s) \equiv \frac{\omega^2(s)}{k}$$
 $\alpha(s) \equiv -\frac{1}{2}\beta\prime(s)$ $\gamma(s) \equiv \frac{1+\alpha^2(s)}{\beta(s)}$

Courant-Snyder Invariant

$$\mathcal{W} = \gamma(s)x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'^2(s)$$
 $\mathcal{W} \equiv A^2$

Off-Momentum Particles

 $p = p_0(1+\delta)$

Relative Momentum Deviation $\delta \equiv \frac{\Delta p}{p_0}$

Momentum Contribution

 $egin{aligned} x(s) &= x_eta(s) + x_\delta(s) \ & ext{Dispersion Function} \ & ext{$x_\delta(s) = D(s)\delta$} \ & ext{Approximations} \ & ext{$x \ll \rho$} \ & ext{$\delta \ll 1$} \end{aligned}$

Dipole Contribution

$$\frac{\partial^2 x}{\partial \theta^2} + (1-n)x = \rho \delta$$

Dispersion Contribution $x(\theta) = A \cos \sqrt{1 - n\theta} + B \sin \sqrt{1 - n\theta} + \frac{\rho}{1 - n\delta}$ **General Contribution**

 $x'' + K(s)x = rac{\delta}{
ho(s)}$

Dispersion Contribution

$$x(s) = C(s)x_0 + S(s)x'_0 + D(s)\delta_0$$

Dispersion Function

$$D(s) = S(s) \int_0^s \frac{C(\tau)}{\rho(\tau)} d\tau - C(s) \int_0^s \frac{S(\tau)}{\rho(\tau)} d\tau$$

Area of the Ellipse

$$\epsilon = \pi \mathcal{W} = \pi [\gamma(s)x^{2}(s) + 2\alpha(s)x(s)x^{'}(s) + \beta(s)x^{'2}(s)]$$

Size of the Distribution $\sigma_{RMS} = \sqrt{\epsilon \beta(s)}$

Normalized Emittance $\epsilon_N = \beta_r \gamma_r \epsilon$

Synchrotron Radiation

Off-Energy Particles $E = E_0 + \epsilon_1$

Off-Energy Contribution

$$x = x_\beta + x_\epsilon$$

Radius of Curvature $G(s) = \rho^{-1}(s)$

Equation of Motion for Off-Energy Particles

$$x'' = -K_x x + G\left(\frac{\epsilon}{E_0}\right)$$

Ultrarelativistic Limit

$$\begin{split} E \gg mc^2 \\ p &= \frac{1}{c}\sqrt{E^2 - (mc^2)^2} \approx \frac{E}{c} \\ \frac{\Delta p}{p_0} &= \frac{\Delta E}{E_0} \\ \delta &= \frac{\epsilon}{E_0} \end{split}$$

Off-Energy Contribution Dispersion Equation $x_{\epsilon} = D(s)\epsilon/E_0$ $D''(s) = -K_x D(s) + G(s)$ D $K_1 = 0 G = 0$ $D(s) = D'(s_0)s + D(s_0)$ FQ $K_1 \neq 0$ G = 0 $D(s) = A\cos(\sqrt{-K_x}x +$ if $K_1 < 0$. $D(s) = A \cosh(\sqrt{K_x}x + \theta)$ if $K_1 > 0$ $\mathbf{DQ} \ K_1 = 0 \qquad G \neq 0$

$$\mathbf{B}\mathbf{M} \qquad D'' = -G^2 \left(D - \frac{1}{G} \right)$$

Synchrotron radiation Dilation Factor

Length Increment

$$l_{\epsilon} = \oint dl = \oint (1 + G(s)x_{\epsilon})ds = L + \delta l_{\epsilon}$$

 $\delta l_{\epsilon} = \oint G(s)x_{\epsilon}ds = rac{\epsilon}{E_0} \oint G(s)D_x(s)ds$

$$rac{\delta l_{\epsilon}}{L} = lpha rac{\epsilon}{E_0} \qquad lpha = rac{1}{L} \oint G(s) D_x(s) ds$$

Ratio Orbit Length Revolution Time

$$\frac{L}{T_0} = \frac{L + \delta l}{T_0 + \delta T} \approx \frac{L}{T_0} \left(1 - \frac{\delta T}{T_0} + \frac{\delta l}{L} \right)$$

Relative Revolution Time Increment

$$\frac{\delta t}{T_0} = \frac{\delta l}{L} = \alpha \frac{\epsilon}{E_0}$$

Azimuthal Displacement

 $z(t) = s(s) - s_c(s)$

Time Displacement $\tau = \frac{s(s) - s_c(s)}{s_c(s)}$

$$\frac{-s_c(s)}{c}$$
Time Displacement Evolution
$$\delta z = -\alpha \frac{\epsilon}{E_0} L \qquad \frac{d\tau}{dt} = -\alpha \frac{\epsilon}{E_0}$$

RF Energy Supply

 $eV(\tau) = U_{rf}(\bar{t}_s - \tau)$

Energy Change $\delta U = eV(\tau_1) - U_{rad}(\epsilon)$

Energy Evolution

$$\frac{d\epsilon}{dt} = \frac{1}{T_0} (e\dot{V}_0 \tau - D\epsilon)$$

Time Displacement Evolution

$$\frac{d^2\tau}{dt^2} + 2\alpha_\epsilon \frac{d\tau}{dt} + \Omega^2 \tau = 0 \qquad \alpha_\epsilon = \frac{D}{2T_0} \qquad \Omega^2 = \frac{\alpha e \dot{V}_0}{T_0 E_0}$$

Time displacement $\tau(t) = A \exp^{-\alpha_{\epsilon} t} \cos(\Omega t - \theta_0)$ If $\alpha_{\epsilon} \ll \Omega$

> In Complex Notation $\epsilon(t) = \tilde{\epsilon} e^{-(\alpha_{\epsilon} - i\Omega)t} \qquad \tau(t) = \tilde{\tau} e^{-(\alpha_{\epsilon} - i\Omega)t} \qquad \tilde{\epsilon} = -i\frac{\Omega E_0}{\alpha}\tilde{\tau}$

Instantaneous Power

$$P_{\gamma} = \int_{0}^{\infty} \frac{dP_{\gamma}}{d\omega}(\omega) d\omega = \int_{0}^{\infty} \int_{d\Omega} \frac{d^{2}P_{\gamma}}{d\Omega d\omega}(\Omega, \omega,) d\Omega d\omega$$

Spectrum Function

$$\frac{dP_{\gamma}}{d\omega}(\omega) = \frac{P_{\gamma}}{\omega_c} S\left(\frac{\omega}{\omega_c}\right) \qquad \text{Critical Frequency}$$
$$\omega_c = \frac{3}{2} \frac{c\gamma^3}{\rho} \qquad S(\xi) = \frac{9\sqrt{3}}{8\pi} \xi \int_{\xi}^{\infty} K_{5/3}(\bar{\xi}) d\bar{\xi}$$

Photon Spectrum Rate

$$\frac{dn_{\gamma}}{dt}(u) = \frac{P_{\gamma}}{u_c^2} F\left(\frac{u}{u_c}\right) \qquad \qquad F(\xi) = S(\xi)/\xi$$

Statistical Properties

$$\frac{dN_{\gamma}}{dt} = \int_0^\infty \frac{dn_{\gamma}}{dt}(u)du \qquad \qquad \frac{dN_{\gamma}}{dt} = \frac{15\sqrt{3}}{8}\frac{P_{\gamma}}{u_c}$$

$$< u >= \left(\frac{dN_{\gamma}}{dt}\right)^{-1} \int_{0}^{\infty} u \frac{dn_{\gamma}}{dt} du \qquad \qquad < u >= \frac{8}{15\sqrt{3}} u_{c}$$

$$< u^2 > = \left(\frac{dN_{\gamma}}{dt}\right)^{-1} \int_0^\infty u^2 \frac{dn_{\gamma}}{dt} du \qquad \qquad < u^2 > = \frac{11}{27} u_c^2$$

Excitation Term

$$< u^2 > \left(\frac{dN_{\gamma}}{dt}\right) = \frac{55}{24\sqrt{3}}r_e\hbar mc^4\frac{\gamma^7}{\rho^3}$$

Energy Deviation Oscillation

 $\epsilon = A_0 \exp^{i\Omega(t-t_0)}$

Photon Emission $\epsilon = A_0 \exp^{i\Omega(t-t_0)} - u \exp^{i\Omega(t-t_i)} \qquad \epsilon = A_1 \exp^{i\Omega(t-t_1)}$

New Amplitude

$$A_1^2 = A_0^2 + u^2 - 2A_0 \cos \Omega (t_i - t_0)$$

Probable Amplitude Change $< \delta A^2 > = < A_1^2 - A_0^2 > = u^2$

Probable Amplitude Squared

$$\left\langle \frac{dA^2}{dt} \right\rangle = \frac{d\left\langle A^2 \right\rangle}{dt} = \frac{dN_{\gamma}}{dt}u^2 \qquad \frac{d\left\langle A^2 \right\rangle}{dt} = -2\frac{\left\langle A^2 \right\rangle}{\tau_{\epsilon}} \qquad \left\langle A^2 \right\rangle = \frac{1}{2}\tau_{\epsilon}\frac{dN_{\gamma}}{dt}u^2$$

For Sinusoidal Energy Oscillation (42)

$$\sigma_{\epsilon}^{2} = \left\langle \epsilon^{2} \right\rangle = \frac{\left\langle A^{2} \right\rangle}{2} = \frac{1}{4} \tau_{\epsilon} \frac{dN_{\gamma}}{dt} u^{2}$$

Beamstrahlung

Lorentz Invariant

$$\Upsilon \equiv \frac{e}{m_e^3} \sqrt{|(F_{\mu\nu}p^{\nu})^2|} = \frac{B}{B_c} = \frac{2}{3} \frac{\hbar\omega_c}{E_e} \qquad \Upsilon_{\rm max} = 2 \frac{r_e^2 \gamma N_b}{\alpha \sigma_z (\sigma_x^* + \sigma_y^*)} \qquad \Upsilon_{\rm ave} \approx \frac{5}{12} \Upsilon_{\rm max} = \frac{5}{6} \frac{r_e^2 \gamma N_b}{\alpha \sigma_z^* (\sigma_x^* + \sigma_y^*)}$$

Quantum Spectrum Formula

$$\frac{dW_{\gamma}}{d\omega\hbar} = \frac{\alpha}{\sqrt{3}\hbar\pi\gamma^2} \left(\int_{\xi}^{\infty} K_{5/3}(\xi') \, d\xi' + \frac{y^2}{1-y} K_{2/3}(\xi) \right) \qquad \qquad \xi = \frac{2\hbar\omega}{3\Upsilon(E-\hbar\omega)} \qquad \qquad y \equiv \omega/E_e$$

Classical Spectrum Formula

$$\Upsilon \to 0 \qquad \frac{dW_{\gamma}}{d\omega\hbar} = \frac{\alpha}{\sqrt{3}\pi\gamma^2} \int_{\xi}^{\infty} K_{5/3}(\xi') d\xi'$$

Photon Emission Rate

$$\frac{dN_{\gamma}}{dt} = \int_{0}^{E_{e}/\hbar} \frac{dW_{\gamma}}{d\omega} \ d\omega$$

Average Emitted Photons

$$n_{\gamma} \approx \frac{12}{\pi^{3/2}} \frac{\alpha r_e N_b}{\sigma_x + \sigma_y} \approx \frac{12}{\pi^{3/2}} \frac{\alpha r_e N_b}{\sigma_x}$$

Relative Energy Loss

$$\delta_B \approx \frac{24}{3\sqrt{3}\pi^{3/2}} \, \frac{r_e^3 \gamma N_b^2}{\sigma_z (\sigma_x + \sigma_y)^2} \approx \frac{24}{3\sqrt{3}\pi^{3/2}} \, \frac{r_e^3 \gamma N_b^2}{\sigma_z \sigma_x^2}$$

Statistical Properties

$$\langle u \rangle = \frac{\delta_B}{n_{\gamma}} \approx \frac{2\sqrt{3}}{9} \frac{r_e^2 N_b \gamma}{\alpha \sigma_z \sigma_x} \qquad \begin{array}{c} \text{Classical Formula} \\ \langle u^2 \rangle \approx \frac{25 \times 11}{64} \langle u \rangle^2 \end{array}$$

Photon Emission Rate

$$\frac{dN_{\gamma BS}}{dt} = \int_0^{E_e} (dW_\gamma/d\omega)d\omega$$

Statistical Properties

$$\langle u^2 \rangle = \left(\frac{dN_{\gamma BS}}{dt}\right)^{-1} \int_0^{E_e} \omega^2 (dW_\gamma/d\omega) d\omega \qquad \quad \langle u \rangle = \left(\frac{dN_{\gamma BS}}{dt}\right)^{-1} \int_0^{E_e} \omega (dW_\gamma/d\omega) d\omega$$

Beamstrahlung Self-Consistant Energy Spread

Excitation Term

$$n_{\gamma} \langle u^2 \rangle \approx 1.4 \; \frac{r_e^5 N_b^3 \gamma^2}{\alpha \sigma_z^2 (\sigma_x + \sigma_y)^3} \; \approx 192 \; \frac{r_e^5 N_b^3 \gamma^2}{\sigma_z^2 \sigma_x^3}$$

Total Energy Spread

$$\begin{aligned} \sigma_{\text{tot}}^2 &= \sigma_{\delta,\text{SR}}^2 + \sigma_{\delta,\text{BS}}^2 \\ \sigma_{\delta,\text{tot}}^2 - \sigma_{\delta,\text{SR}}^2 &= A \left(\frac{\sigma_{\delta,\text{SR}}}{\sigma_{\delta,\text{tot}}} \frac{1}{\sigma_{z,\text{SR}}} \right)^2 \\ \sigma_{\delta,\text{tot}} &= \left[\frac{1}{2} \sigma_{\delta,\text{SR}}^2 + \left(\frac{1}{4} \sigma_{\delta,\text{SR}}^4 + A \frac{\sigma_{\delta,\text{SR}}^2}{\sigma_{z,\text{SR}}^2} \right)^{1/2} \right]^{1/2} \end{aligned}$$

Bunch Length

$$\sigma_{z,\mathrm{tot}} = rac{lpha_{\mathrm{C}}C}{2\pi Q_s} \sigma_{\delta,\mathrm{tot}}$$

Dispersion Invariant

$$\mathcal{H}_{x}^{*} \equiv \frac{\left(\beta_{x}^{*} D_{x}^{\prime \ *} + \alpha_{x}^{*} D_{x}^{*}\right)^{2} + D_{x}^{*2}}{\beta_{x}^{*}}$$

Self-Consistent Equations

$$\epsilon_{x,\text{tot}} = \epsilon_{x,\text{SR}} + \frac{\tau_x n_{\text{IP}}}{4T_{\text{rev}}} \{ n_\gamma < u^2 > \} \mathcal{H}_x^*$$

$$\sigma_{\delta,\text{tot}}^2 = \sigma_{\delta,\text{SR}}^2 + \frac{n_{\text{IP}}\tau_{E,\text{SR}}}{4T_{\text{rev}}} \{n_{\gamma} < u^2 > \}$$

Monochromatization

$$D_x^*\sigma_{\delta,\mathrm{tot}}\gg\sqrt{eta_x^*\epsilon_x}$$

$$\epsilon_{x, ext{tot}} pprox \epsilon_{x, ext{SR}} + rac{2B\mathcal{H}_x^*}{{D_x^*}^3 \sigma_{\delta, ext{tot}}^5}$$

$$\sigma_{\delta,\text{tot}}^2 = \sigma_{\delta,\text{SR}}^2 + \frac{B}{D_x^{*3}\sigma_{\delta,\text{tot}}^5}$$

$$B \equiv 48 \ \frac{n_{\rm IP}\tau_{E,\rm SR}}{T_{\rm rev}} \ \frac{r_e^5 N_b^3 \gamma^2}{(\alpha_{\rm C} C/(2\pi Q_s))^2}$$

Baseline

$$D_x^* \sigma_{\delta, \text{tot}} \ll \sqrt{\beta_x^* \epsilon_x}$$

$$\epsilon_{x,\text{tot}} \approx \epsilon_{x,\text{SR}} + \frac{2B\mathcal{H}_x^*}{\sigma_{\delta,\text{tot}}^2 \beta_x^{*3/2} \epsilon_{x,\text{tot}}^{3/2}}$$

$$\sigma_{\delta,\text{tot}}^2 = \sigma_{\delta,\text{SR}}^2 + \frac{B}{\sigma_{\delta,\text{tot}}^2 \beta_x^{*3/2} \epsilon_{x,\text{tot}}^{3/2}}$$

Monochromatization

Transverse Displacement

$$x = x_{\beta} + D_x \epsilon_0, \qquad y = y_{\beta} + D_y \epsilon_0 \qquad \epsilon_0 = \frac{\epsilon}{E_0}$$

Phase Space Distribution

$$f^{\pm}(x, y, \epsilon) = \frac{f^{\pm}(p_x, p_y, z)}{\sqrt{8\pi^3 \beta_x^* \epsilon_{xc} \beta_y^* \epsilon_{yc} \sigma_{\epsilon}^2}} \exp\left\{-\frac{(x_{\beta} + D_x \epsilon_0)^2}{2\beta_x^* \epsilon_{xc}} - \frac{(y_{\beta} + D_y \epsilon_0)^2}{2\beta_y^* \epsilon_{yc}} - \frac{\epsilon^2}{2\sigma_{\epsilon}^2}\right\}$$

Average at the IP
$$\langle \mathcal{A} \rangle^{\pm} = \int f^{\pm}(X^{\pm})\mathcal{A}(X^{+}, X^{-})dX^{\pm} \qquad \langle \mathcal{A} \rangle^{*} = \left\langle \langle \mathcal{A} \rangle^{+} \right\rangle^{-} = \left\langle \langle \mathcal{A} \rangle^{-} \right\rangle^{+}$$

Average over distribution

$$\sigma_x^* = \sqrt{\langle x^2 \rangle^{\pm}} = \sqrt{\beta_x^* \epsilon_{xc} + D_x^{*2} \sigma_\epsilon^2} \qquad \langle x \epsilon_0 \rangle^{\pm} = D_x^{*\pm} \sigma_\epsilon^2 \qquad \sigma_\epsilon^* = \sqrt{\langle \epsilon_0^2 \rangle^{\pm}}$$
$$\sigma_y^* = \sqrt{\langle y^2 \rangle^{\pm}} = \sqrt{\beta_y^* \epsilon_{yc} + D_y^{*2} \sigma_\epsilon^2} \qquad \langle y \epsilon_0 \rangle^{\pm} = D_y^{*\pm} \sigma_\epsilon^2$$

Collision Energy Spread

 $\sigma_w = \sqrt{2}E_0\sigma_\epsilon$

Beam Energy Spread $\sigma_{\epsilon}^{2} \propto \frac{55\hbar c{E_{0}}^{2}}{32\sqrt{3(mc^{2})^{3}}} \frac{I_{3}}{I_{2}} \frac{1}{J_{\epsilon}}$

Function of radius and $J_{\ensuremath{\varepsilon}}$

$$\sigma_w \propto (\rho J_\epsilon)^{-1/2}.$$

Typical Options

$$\left. \begin{array}{l} \rho >> \rho_0 \\ J_{\epsilon} > J_{0\epsilon} \end{array} \right\} \Rightarrow \sigma_w < \sigma_{0w} \qquad \qquad J_{\epsilon} \in [0.5, 2.5]$$

Monochromatization

$$(\Sigma_w)_{\lambda} = rac{\sigma_{\delta}}{\sqrt{2}}rac{1}{\lambda}$$
 $\lambda \equiv rac{\mathcal{L}_0}{\mathcal{L}}$ $\mathcal{L}_0 = rac{k_b f_r N_+ N_-}{4\pi \sigma_{x\beta}^* \sigma_{y\beta}^*}$

Baseline Scheme

$$D^*_{x^+} = -D^*_{x^-} = 0$$
 $\mathcal{L} = \mathcal{L}_0$

Standard Monochromatization $D_{x^+}^* = -D_{x^-}^* = D_x^*$ $D_{y^+}^* = -D_{y^-}^* = D_y^*$

$$\mathcal{L} = \frac{\mathcal{L}_0}{\sqrt{1 + \sigma_\epsilon^2 \left(\frac{D_x^{*2}}{\sigma_{x\beta}^{*2}} + \frac{D_y^{*2}}{\sigma_{y\beta}^{*2}}\right)}} \qquad \Sigma_w = \frac{\sqrt{2}E_0\sigma_\epsilon}{\sqrt{1 + \sigma_\epsilon^2 \left(\frac{D_x^{*2}}{\sigma_{x\beta}^{*2}} + \frac{D_y^{*2}}{\sigma_{y\beta}^{*2}}\right)}} \qquad \lambda = \sqrt{1 + \sigma_\epsilon^2 \left(\frac{D_x^{*2}}{\sigma_{x\beta}^{*2}} + \frac{D_y^{*2}}{\sigma_{y\beta}^{*2}}\right)}$$

Standard Monochromatization $D_{x^+}^* = -D_{x^-}^* = D_x^*$ $D_{y^+}^* = D_{y^-}^* = D_y^*$

$$\Sigma_{w} = \frac{\sqrt{2}E_{0}\sigma_{\epsilon}}{\sqrt{1 + \sigma_{\epsilon}^{2}\left(\frac{D_{x}^{*2}}{\sigma_{x\beta}^{*2}}\right)}} \quad L = \frac{L_{0}}{\sqrt{1 + \sigma_{\epsilon}^{2}\left(\frac{D_{x}^{*2}}{\sigma_{x\beta}^{*2}}\right)}}\sqrt{1 + \sigma_{\epsilon}^{2}\left(\frac{D_{y}^{*2}}{\sigma_{y\beta}^{*2}}\right)} \quad \lambda = \sqrt{1 + \sigma_{\epsilon}^{2}\left(\frac{D_{x}^{*2}}{\sigma_{x\beta}^{*2}}\right)}$$

Monochromatization factor $\lambda(D_x *, \beta_x * = 0.25 \text{ m})$

Standard Monochromatization

$$D_{y^+}^* = D_{y^-}^* = 0$$
 $(\Sigma_w)_{\lambda} = \frac{\sigma_{\delta}}{\sqrt{2}} \frac{1}{\lambda}$ $\mathcal{L} \propto \frac{1}{\lambda}$

Figure 6.1: Monochromatization factor versus D_x^* at fixed $\beta_x^* = 0.25$ m, for constant emittance and energy spread.

Monochromatization factor $\lambda(D_x *= 0.11 \text{ m}, \beta_x *)$

Standard Monochromatization

$$D_{y^+}^* = D_{y^-}^* = 0$$
 $(\Sigma_w)_{\lambda} = \frac{\sigma_{\delta}}{\sqrt{2}} \frac{1}{\lambda}$ $\mathcal{L} \propto \frac{1}{\lambda}$

Figure 6.2: Monochromatization factor versus β_x^* at fixed $D_x^* = 0.11$ m, for constant emittance and energy spread.

Baseline Monochromatization
$$D_{x^+}^* = -D_{x^-}^* = D_x^*$$
 $D_{y^+}^* = D_{y^-}^* = 0$

Self-Consistent Equations

$$\epsilon_{x,\text{tot}} = \epsilon_{x,\text{SR}} + \frac{\tau_x n_{\text{IP}}}{4T_{\text{rev}}} \{ n_\gamma < u^2 > \} \mathcal{H}_x^* \qquad \sigma_{\delta,\text{tot}}^2 = \sigma_{\delta,\text{SR}}^2 + \frac{n_{\text{IP}}\tau_{E,\text{SR}}}{4T_{\text{rev}}} \{ n_\gamma < u^2 > \}$$

Statistical Properties

$$\sigma_x^* = \sqrt{\langle x^2 \rangle^{\pm}} = \sqrt{\beta_x^* \epsilon_{xc} + D_x^{*2} \sigma_\epsilon^2} \qquad \langle x \epsilon_0 \rangle^{\pm} = D_x^{*\pm} \sigma_\epsilon^2 \qquad (\Sigma_w)_\lambda = \frac{\sigma_\delta}{\sqrt{2}} \frac{1}{\lambda}$$

Baseline monochromatization

$E_e [{ m GeV}]$	62.5
scheme	m.c.
	basel.
I_b [mA]	408.3
$N_b [10^{10}]$	3.3
$n_b [1]$	25760
n_{IP} [1]	2
β_x^* [m]	1.0
$\beta_y^* \; [\mathrm{mm}]$	2
D^*_x [m]	0.22
$\epsilon_{x,\mathrm{SR}} \; [\mathrm{nm}]$	0.17
$\epsilon_{x,\mathrm{tot}}$ [nm]	0.21
$\epsilon_{y,\mathrm{SR}} \mathrm{[pm]}$	1
$\sigma_{x,\mathrm{SR}} \; [\mathrm{\mu m}]$	132
$\sigma_{x,\mathrm{tot}}~[\mathrm{\mu m}]$	144
$\sigma_y \mathrm{[nm]}$	45
$\sigma_{z,\mathrm{SR}} \; [\mathrm{mm}]$	1.8
$\sigma_{z,{ m tot}} [{ m mm}]$	1.8
$\sigma_{\delta,\mathrm{SR}}$ [%]	0.06
$\sigma_{\delta,\mathrm{tot}}$ [%]	0.06
$\theta_c \; [\mathrm{mrad}]$	0
circ. C [km]	100
$\alpha_{\rm C} \ [10^{-6}]$	7
$f_{ m rf}~[m MHz]$	400
$V_{\rm rf} [{ m GV}]$	0.4
$U_{0,\mathrm{SR}}$ [GeV]	0.12
$U_{0,\mathrm{BS}} \mathrm{[MeV]}$	0.01
$ au_E/T_{ m rev}$	509
Q_s	0.030
$\Upsilon_{ m max}$ $[10^{-4}]$	0.3
$\Upsilon_{\rm ave} [10^{-4}]$	0.1
$\theta_c \; [\mathrm{mrad}]$	0
$\xi_x [10^{-2}]$	1
$\xi_y [10^{-2}]$	4
λ [1]	9.2
$L [10^{35}]$	1.0
$cm^{-2}s^{-1}$]	
$\sigma_w [{ m MeV}]$	5.8

Width of standard model Higgs 4-5 MeV requires $\lambda \ge 10$ $N_b = 3.3 \times 10^{10} n_b = 25760 \beta_y * = 2 \text{ mm}$

 \star : λ = 9.2, L = 1 x 10³⁵ cm⁻²s⁻¹

Baseline monochromatization

$E_e [{ m GeV}]$	62.5
scheme	m.c.
	basel.
I_b [mA]	408.3
$N_b \; [10^{10}]$	3.3
$n_b [1]$	25760
n_{IP} [1]	2
$eta_x^* \mathrm{[m]}$	1.0
$\beta_y^* \; [\mathrm{mm}]$	2
$D^*_x \mathrm{[m]}$	0.22
$\epsilon_{x,\mathrm{SR}} \; [\mathrm{nm}]$	0.17
$\epsilon_{x,\mathrm{tot}}$ [nm]	0.21
$\epsilon_{y,\mathrm{SR}} \mathrm{[pm]}$	1
$\sigma_{x,\mathrm{SR}} \; [\mathrm{\mu m}]$	132
$\sigma_{x,\mathrm{tot}}~[\mathrm{\mu m}]$	144
$\sigma_y \mathrm{[nm]}$	45
$\sigma_{z,\mathrm{SR}} \; [\mathrm{mm}]$	1.8
$\sigma_{z,{ m tot}} [{ m mm}]$	1.8
$\sigma_{\delta,\mathrm{SR}}$ [%]	0.06
$\sigma_{\delta,\mathrm{tot}}$ [%]	0.06
$\theta_c \; [\mathrm{mrad}]$	0
circ. C [km]	100
$\alpha_{\rm C} \ [10^{-6}]$	7
$f_{\rm rf} [{ m MHz}]$	400
$V_{\rm rf} [{ m GV}]$	0.4
$U_{0,\mathrm{SR}}$ [GeV]	0.12
$U_{0,\mathrm{BS}}$ [MeV]	0.01
$ au_E/T_{ m rev}$	509
Q_s	0.030
$\Upsilon_{\rm max}$ [10 ⁻⁴]	0.3
$\Upsilon_{\rm ave} [10^{-4}]$	0.1
$\theta_c \; [\text{mrad}]$	0
$\xi_x [10^{-2}]$	1
$\xi_y [10^{-2}]$	4
λ [1]	9.2
$L [10^{30} - 2^{-1}]$	1.0
cm^2s^1	
$\sigma_w \; [{ m MeV}]$	5.8

Width of standard model Higgs 4-5 MeV requires $\lambda \ge 10$ $N_b = 3.3 \times 10^{10} n_b = 25760 \beta_y^* = 2 mm$ Luminosity contours -00e+35 4.5 3.5 1.36e+35 2.08e+35 1.90e+35 1.54e+35 1.18e+35 1.72e+35 2.26e+35 44e+35 2e+35 <u>ב</u> • 13035 × 2.5 β 1.358138.59e+35 1.5 0.5 0.05 0.1 0.15 0.2 0.25 D _ * [m]

 \star : λ = 9.2, L = 1 x 10³⁵ cm⁻²s⁻¹

Monochromatization Factor

 \bigstar : λ = 2.3, L = 7.5 x 10³⁵ cm⁻²s⁻¹

 \bigstar : λ = 2.3, L = 7.5 x 10³⁵ cm⁻²s⁻¹

Optimized Monochromatization Luminosity_max and λ

S = [0.1, 3], T = [0.1, 3] $\beta_{0x} = 1.0 \text{ m}, \beta_{0y} = 1.0 \text{ mm}$ $D_{0x} = 0.22 \text{ m}$ $N_{0b} = 3.3 \times 10^{10}, n_{0b} = 25760$ $\beta_x = \beta_{0x} * S^2$, $D_x * = D_{0x} * S$ $N_b = N_{0b} / T$, $n_b = n_{0b} * T$

Monochromatization Factor

Optimized Monochromatization Luminosity max and λ

S = [0.1, 3], T = [0.1, 3] $\beta_{0x} = 1.0 \text{ m}, \beta_{0y} = 1.0 \text{ mm}$ $D_{0x} = 0.22 \text{ m}$ $N_{0b} = 3.3 \times 10^{10}, n_{0b} = 25760$ $\beta_x = \beta_{0x} * S^2, D_x * = D_{0x} * S$

$$N_b = N_{0b} / T$$
, $n_b = n_{0b} * T$

 \bigstar : λ₀ = 10.17321, L ~ 1 x 10³⁶ cm⁻²s⁻¹

Optimized Monochromatization Luminosity_max and λ

 \bigstar : λ₀ = 10.17321, L ~ 1 x 10³⁶ cm⁻²s⁻¹

S = [0.1, 3], T = [0.1, 3] $\beta_{0x} = 1.0 \text{ m}, \beta_{0y} = 1.0 \text{ mm}$ $D_{0x} = 0.22 \text{ m}$ $N_{0b} = 3.3 \times 10^{10}, n_{0b} = 25760$ $\beta_x = \beta_{0x} * S^2, D_x * = D_{0x} * S$

$N_b = N_{0b} / T$, $n_b = n_{0b} * T$

Monochromatization Factor

 \star : λ = 5.07, β = 1.96 m, D_x = 0.308 m, L = 3.736 x 10³⁵ cm⁻²s⁻¹

Conclusions

 \star : λ = 5.07, β = 1.96 m, D_x = 0.308 m, L = 3.736 x 10³⁵ cm⁻²s⁻¹

E_e [GeV]	45.6	62.5	62.5	62.5	80
scheme	CW	ho.	m.c.	m.c.	CW
			basel.	opt'd	
I_b [mA]	1450.3	408.3	408.3	408.3	151.5
N_b [10 ¹⁰]	3.3	1.05	3.3	11.1	6.0
n_b [1]	91500	80960	25760	7728	5260
n_{IP} [1]	2	2	2	2	2
β_x^* [m]	1	1.0	1.0	1.96	1
β_y^* [mm]	2	2	2	1	2
D_x^* [m]	0	0	0.22	0.308	0
$\epsilon_{x,\mathrm{SR}}$ [nm]	0.09	0.17	0.17	0.17	0.26
$\epsilon_{x,\mathrm{tot}}$ [nm]	0.09	0.17	0.21	0.70	0.26
$\epsilon_{y,\mathrm{SR}} \mathrm{[pm]}$	1	1	1	1	1
$\sigma_{x,\mathrm{SR}} \; [\mu\mathrm{m}]$	9.5	9.2	132	185.7	16
$\sigma_{x,\mathrm{tot}} \; [\mu\mathrm{m}]$	9.5	9.2	144	188.5	16
σ_y [nm]	45	45	45	32	45
$\sigma_{z,\mathrm{SR}}$ [mm]	1.6	1.8	1.8	1.8	2.0
$\sigma_{z,\text{tot}} \text{ [mm]}$	3.8	1.8	1.8	1.8	3.1
$\sigma_{\delta,\mathrm{SR}}$ [%]	0.04	0.06	0.06	0.06	0.07
$\sigma_{\delta,\mathrm{tot}}$ [%]	0.09	0.06	0.06	0.06	0.10
$\theta_c [\text{mrad}]$	30	0	0	0	30
circ. C [km]	100	100	100	100	100
$\alpha_{\rm C} [10^{-6}]$	7	7	7	7	7
$f_{\rm rf}$ [MHz]	400	400	400	400	400
$V_{\rm rf}$ [GV]	0.2	0.4	0.4	0.4	0.8
$U_{0,\mathrm{SR}}$ [GeV]	0.03	0.12	0.12	0.12	0.33
$U_{0,\mathrm{BS}}$ [MeV]	0.5	0.05	0.01	0.01	0.21
$ au_E/T_{ m rev}$	1320	509	509	509	243
Q_s	0.025	0.030	0.030	0.030	0.037
$\Upsilon_{ m max}$ $[10^{-4}]$	1.7	0.8	0.3	0.85	4.0
$\Upsilon_{\rm ave} \ [10^{-4}]$	0.7	0.3	0.1	0.35	1.7
$\theta_c \text{ [mrad]}$	30	0	0	0	30
$\xi_x [10^{-2}]$	5	12	1	2.22	7
$\xi_{y} [10^{-2}]$	13	15	4	6.76	16
λ [1]	1	1	9.2	5.08	1
L 10 ³⁵	9.0	2.2	1.0	3.74	1.9
$cm^{-2}s^{-1}$]					
$\sigma_w \mathrm{[MeV]}$	58	53	5.8	10.44	113

- Monochromatization scheme can be implemented.
- Beamstrahlung effects may be controlled.
- Simulation supports predictions.
- Lattice designed is still in progress and the required

modification should be possible.

• Theory confirmation could be achieved at the FCCe+e-

Supported in part by the European Commission under Capacities 7th Framework Programme project EuCARD-2, grant agreement 312453.

Optimized Monochromatization for Direct Higgs Production at the FCCe+e-

Ing. M. Alan Valdivia G. valdivia@ugto.mx Holiday Inn Pachuca 2016 Pachuca, Hidalgo, 101116