Electroweak Physics

if 75años)

Jens Erler

Reunión General de la Red-FAE

Holiday Inn, Pachuca, Hgo. November 10 – 12, 2016

Outline

- Z boson: lineshape, decays, and the weak mixing angle
- W boson: mass, width, and branching ratios
- Top quark: mass uncertainty and impact on precision tests
- Charm and bottom quarks: mass uncertainties and impact
- Oblique parameters: current and future (FCC-ee as example)
- Contact interactions: low-energy measurements

Introduction

Most searches for Physics Beyond the Standard Model fall into one of three categories:

New phenomena: use shape and rates to distinguish from hopefully small background

Rare or forbidden processes: few or even one event enough; vanishing or very small (reducible) background

Precision tests (this talk): small or tiny signal over SM "background" (irreducible but calculable); only insightful in greater context; need to know accuracy accurately

Electroweak fit

- ▶ input: need 4 input variables for EW sector of the SM: $SU(2)_{L} \times U(1)_{Y}$ gauge couplings and Higgs potential parameters.
- ▶ fine structure constant: α known to 6.6 × 10⁻¹⁰ from Rydberg constant (leaves g_e-2 as new physics constraint)
- Fermi constant: G_F known to 5.1 × 10⁻⁷ from muon lifetime
- ▶ <u>Higgs mass</u>: M_{H^2} known to 3.8 × 10^{-3} from kinematic reconstruction, but enters only in loops (except total width)
- <u>Z mass</u>: M_Z² known to 4.6 × 10⁻⁵ from Z-lineshape
 induces largest input uncertainty

Z lineshape

lineshape: cross section scans at circular lepton colliders (energy calibration through resonant spin depolarization)

P peak location = M_Z → no longer negligible in sin²θ_W = I − M_W²/M_Z² if M_W improves

height = peak cross section: for hadrons most precise and least correlated $\Rightarrow \alpha_s$

▶ $\frac{1}{2}$ width @ $\frac{1}{2}$ maximum = Γ_Z
→ N_ν

Number of active neutrinos

currently:

 $N_v = 2.992 \pm 0.007$

need to fix $\alpha_s = 0.1129$ to find $N_v = 3$, but this is a bad fit.

FCC-ee @ 91 GeV:

 N_{ν} can be constrained to within \pm 0.0006

FCC-ee @ 161 GeV:

the ZY final state would provide an additional constraint on N_{ν} of better than $\pm~0.0015$

 α_{s}

source	αs	uncertainty	FCC
Z decays	0.1203	0.0028	0.00012
W decays	0.117	0.043	0.00018
т decays	0.1174	+0.0019_0.0017	
deep inelastic	0.1156	0.0023	0.00018
jet-event shapes in	0.1169	0.0034	< 0.001
lattice	0.1187	0.0012	
world average	0.1181	0.0013	0.00009

needed for top threshold scan & precision gauge coupling unification Bethke, Dissertori, Salam 2015 JE, Freitas 2015 PDG 2016

W boson

- Width (direct and hadronic branching ratio): Ist + 2nd row CKM unitarity test and α_s determination
- leptonic W branching ratios: lepton universality tests
- W pair production: four-fermion operators (can use ZH threshold)
- ▶ <u>W mass</u> (kinematic reconstruction and W threshold scan): Currently most important SM test: $M_W = 80.385 \pm 0.015$ GeV from Tevatron & LEP 2 (combined with M_Z) → $sin^2\theta_W^{OS} \equiv I - M_W^2/M_Z^2 = 0.22290 \pm 0.00029$ and $M_H = 83^{+26}_{-22}$ GeV.
 - M_W is easily affected by new physics in general and Higgs sector modification in particular, but needs m_t .

Top quark

- $Currently:
 <math>
 m_t = 173.34 \pm 0.64_{exp.} \pm 0.50_{QCD} \text{ GeV}$
- <u>experimentally</u>:

2.6 σ discrepancy between the two most precise measurements (the D0 and CMS lepton + jets channels)

- QCD uncertainty: from hadron collider extraction
- theoretically cleaner alternatives: tt production cross section tt threshold scan at a future lepton collider

JE, Freitas 2015 (PDG 2016)

source	Мн	ΔΜΗ	FCC -ee
EW fit	96	+22 -19	1.3
Higgs BRs	126.1	1.9	
direct	I 25.09	0.24	0.007
global fit	125.11	0.24	0.007

MΗ

Charm and bottom quarks

- ► $\alpha(M_Z)$ and $\sin^2 \theta_W(0)$: can use PQCD for heavy quark contribution if masses known.
- g-2: c quark contribution to muon g-2 similar to γ×γ; ± 70 MeV uncertainty in m_c induces an error of ± 1.6 × 10⁻¹⁰ comparable to the projected errors for the FNAL and J-PARC experiments.
- ▶ <u>Yukawa coupling mass relation</u> (in single Higgs doublet SM): $\Delta m_b = \pm 9$ MeV and $\Delta m_c = \pm 8$ MeV to match precision from HiggsBRs @ FCC-ee
- QCD sum rule: m_c = 1272 ± 8 MeV Masjuan, Spiesberger, JE 2016 (expect about twice the error for m_b)

Implications of T (ρ_0) parameter

 $\rho_0 \sim I + \alpha T$

ρ₀ would constrain VEVs of higher dimensional Higgs representations to ≤ I GeV

Sensitivity to degenerate scalar EW doublets up to 2 TeV (using results based on EFT approach *Henning, Lu, Murayama 2014*)

 Non-degenerate multiplets of heavy fermions or scalars

Implications of T (ρ_0) parameter

ρ₀ would constrain VEVs of higher dimensional Higgs representations to ≤ I GeV

Sensitivity to degenerate scalar EW doublets up to 2 TeV (using results based on EFT approach *Henning, Lu, Murayama* 2014)

 Non-degenerate multiplets of heavy fermions or scalars

Non-degenerate multiplets of heavy fermions or scalars

 $\blacktriangleright \Delta \rho_0 = G_F \Sigma_i C_i / (8 \sqrt{2} \pi^2) \Delta m_i^2$

 $\left[\Delta m_i^2 \ge \left(m_1 - m_2\right)^2\right]$

- ▶ despite appearance <u>there is</u> decoupling (see-saw type suppression of Δm_i^2)
- ▷ currently: $\Sigma_i C_i / 3 \Delta m_i^2 \le (49 \text{ GeV})^2$
- ▷ assuming no SM deviation (ρ₀ = 1 ± 0.000012) ⇒ FCC-ee: Σ_i C_i / 3 Δm_i² ≤ (8 GeV)²
- ▷ assuming central value unchanged from today (ρ₀ = 1.00037 ± 0.000012)
 ⇒ FCC-ee: Σ_i C_i / 3 Δm_i² = (34 ± 1 GeV)²

STU

		current	FCC-ee
0.20 0.20 0.20	S	± 0.099	± 0.005
0.15	т	± 0.116	± 0.007
► 0.10 0.05	U	± 0.095	± 0.005
	S	± 0.078	± 0.003
-0.05 -0.15 -0.10 -0.05 0 0.05 0.10 0.15 0.20 0.25 0.30 S	т	± 0.066	± 0.003
	т	± 0.030	± 0.002

Low-energy measurements

Model independent new physics sensitivity

$$\mathcal{L}_{eq} = \left[\frac{G_F}{\sqrt{2}}g_{VA}^{eq}(\mathrm{SM}) + \frac{g^2}{\Lambda^2}\right]\bar{e}\gamma_{\mu}e\,\bar{q}\gamma^{\mu}\gamma^5q$$
$$g^2 - 4\pi - \bar{g}_{VA}^{eq} - g_{VA}^{eq}(\mathrm{SM})$$

$$\frac{g}{\Lambda^2} = \frac{4\pi}{\Lambda^2} = \frac{g_{VA} - g_{VA}(SM)}{2v^2}$$

 $g^2 = 4\pi$ (convention)

Customary to quote one-sided limits on Λ !

important metric: generalization to other types of operators?

	precision	$\Delta \sin^2 \overline{\theta}_{W}(0)$	Λ_{new} (expected)
APV ¹³³ Cs	0.58 %	0.0019	32.3 TeV
E 58	14%	0.0013	17.0 TeV
Qweak I	19%	0.0030	17.0 TeV
PVDIS	4.5%	0.0051	7.6 TeV
Qweak final	4.5%	0.0008	33 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV
APV ²²⁵ Ra	0.5%	0.0018	34 TeV
APV ²¹³ Ra/ ²²⁵ Ra	0.1%	0.0037	I 6 TeV
Belle II	0.14%		33 TeV
CEPC / FCC	?	?	?

PV (axial)-electron (vector)-quark couplings

 $[2 g^{eu} - g^{ed}]_{AV}$

 $[2 g^{eu} - g^{ed}]_{\Delta V}$

Compositeness scales

[2 g^{eu} - g^{ed}]_{AV}

Discriminating between new physics

Summary

- **<u>fixing the SM</u>**: determine fundamental parameters like α_s
- <u>testing the SM</u>: CKM unitarity and fermion universality tests
- over-constraining the SM: compute and measure derived quantities like M_W, sin² θ_W , g_µ–2 and weak charges
- ▶ <u>GUTs</u>: e.g. gauge & Yukawa-coupling (bT) unification
- model-independent constraints on new physics: e.g. oblique parameters or four-fermion operators
- models: extra fermions or scalars; supersymmetry, extra dimensions, compositeness, extended Higgs sector models, dark sector models, ...

BACKUP

Uncertainties in precision observables

- statistical: straightforward to estimate and main reference when designing experiments; limited by beam time, luminosity, ...; known error distribution
- systematic: difficult to estimate in general; can often be constrained by auxiliary measurements (which may themselves be statistical); sometimes unknown distribution but often approximately Gaussian
- theoretical: very difficult to estimate in general but can sometimes be systematically improved; usually unknown distribution
- model: (almost) unquantifiable; unknown distribution
- parametric: easy to determine; distribution may be complicated but can be taken into account exactly within global fits

Assumptions for FCC-ee

- $M_Z \pm 2.1 \text{ MeV} \Rightarrow < 100 \text{ keV}$
- $\Gamma_Z \pm 2.3 \text{ MeV} \Rightarrow < 100 \text{ keV}$
- $R_{\mu} \pm 0.025 \Rightarrow < 0.001$
- $R_b \pm 0.00066 \implies < 6 \times 10^{-5}$
- $m_t \pm 810 \text{ MeV} (incl. QCD) \Rightarrow \pm 15 \text{ MeV}$
- σ_{had} ± 37 pb = ± 4 pb (assumes 0.01% luminosity error)

 $A_{LR} \pm 0.0022 \Rightarrow \pm 2 \times 10^{-5}$ (needs 3-loop EW to be useful, 4-loop to match exp.)

 $A_{LR}^{FB}(b) \pm 0.020 \Rightarrow \pm 0.001$ (using similar b-tagging improvements as for R_b)

 $M_W \pm 33 \text{ MeV} (\text{LEP}); \pm 16 \text{ MeV} (\text{Tevatron}) \Rightarrow \pm 0.6 \text{ MeV}$

 $\Gamma_W \pm 42 \text{ MeV} \Rightarrow 1 \text{ st} + 2 \text{ nd row CKM unitarity test}$

Complementarity: Need EW precision measurements on and off the Z pole

on pole: sin²θ_W STU RPC SUSY ZZ' below pole (interference amplitude): running sin²θ_W ("dark Z") X parameter RPV SUSY VVee, VVuu, VVdd 4-Fermi operators parity-violating eeee, eeuu, eedd 4-Fermi operators

above pole: eeff operators incl. 2nd/3rd generation f and parity-conserving