

Heavy flavor physics at CMS and D0

Ivan Heredia de la Cruz CINVESTAV / CONACyT, Mexico RedFAE Workshop 2016 Nov 10th 2016, Pachuca, Hgo.

Outline

- Introduction
- D0 & CMS detectors & the B physics program
- CP-Violation in B⁰_s.
- B_c meson decays.
- B hadron properties.
- Rare decays as new physics probes.
- Exotic hadrons.
- Summary and outlook

Introduction

- LHC: pp collisions @ 7-8 (Run I) & 13 TeV (Run II) ⇒ large B hadron production.
- D0/Tevatron shut down in 2012. B/QCD program still continues.
- Precise measurements of B hadrons properties help to improve or constrain QCD models, and could provide signs of new physics or constrain BSM models.
- CMS is able to provide several measurements of B hadrons properties that are competitive with results from other experiments, such as in:
 - B mesons and baryons: masses, lifetimes, BRs, polarizations, etc.
 - CP-Violation in B mesons.
 - **B rare decays:** branching ratios, angular parameters.
 - Decays to exotic hadrons.

D0 and CMS detectors

B Physics Triggers (CMS/Run I)

B Physics Triggers (CMS/Run II)

B Physics Triggers (CMS/Run II)

- CPV phase ϕ_s from interference btw direct and through mixing decays. ۲
- Non-standard particles in loops could change the SM prediction of ϕ_s .
- 3+1 angular-time analysis to disentangle CP-odd/even contributions. ٠

 $\rightarrow J/\psi f_0(980)$

• CMS: CPV analysis is simplified using $B_s^0 \rightarrow J/\psi f_0(\pi^+\pi^-)$ wrt $B_s^0 \rightarrow J/\psi \phi(K^+K^-)$ decays. It is also a pure CP-odd eigenstate.

$$R_{f_0/\phi} = \frac{\mathcal{B}(B^0_s \to J/\psi f_0) \,\mathcal{B}(f_0 \to \pi^+ \pi^-)}{\mathcal{B}(B^0_s \to J/\psi \phi) \,\mathcal{B}(\phi \to K^+ K^-)} = \frac{N^{f_0}_{obs}}{N^{\phi}_{obs}} \,\epsilon^{\phi/f_0}_{reco} \qquad \qquad N^{\phi}_{obs} = 8377 \pm 107$$

• Region around the $f_0(980)$ can be used to

measure $\tau(B^{0}_{s})_{CP-odd}$ and φ_{s} .

[•] B properties @ CMS -- Ivan Heredia

$B_{\uparrow}^{+} \rightarrow J/\psi n\pi^{\pm}$

- Unique lab to study HQ dynamics.
- b and c quarks competing in decay. .
- Measurements in a kin. region complementary to LHCb.

 $R_{\rm c/u} = \frac{\sigma({\rm B_c^+})\mathcal{B}({\rm B_c^+} \to {\rm J}/\psi\pi^+)}{\sigma({\rm B^+})\mathcal{B}({\rm B^+} \to {\rm J}/\psi{\rm K^+})}$ $R_{\rm B_c} = \frac{\mathcal{B}(\rm B_c^+ \to J/\psi\pi^+\pi^+\pi^-)}{\mathcal{B}(\rm B_c^+ \to J/\psi\pi^+)}$

- LHCb, $p_{T} > 4 \text{ GeV}$, 2.5 < $|\eta| < 4.5$, measures $R_{c/u} = 0.68 \pm 0.10 \pm 0.03 \pm 0.05$ [PRL 109 (2012) 232001]. Difference expected since $\langle p_{\tau}(B_{c}) \rangle < \langle p_{\tau}(B_{c}) \rangle$ in
- LHCb measures $R_{p_{C}} = 2.41 \pm 0.30 \pm 0.33$
- Predictions of R_{BC} , assuming $B_{C} \rightarrow J/\psi W$ and $W^+ \rightarrow n\pi^+$, btw = 1.5 – 2.3 [PRD 81] (2010) 014005, PRD 81 (2010) 014015].

B hadron lifetimes

- B-lifetimes determine importance of non-spectator contributions.
- CMS about to publish precise measurements:

 $\begin{array}{c} & J/\psi \\ c & \bar{c} \\ & \bar{$

Pseudo Proper Decay Length

B baryons

 Apart from lifetime, (hadro-)production measurements.

B properties @ CMS -- Ivan Heredia

Rare B decays as new physics probes

- Rare decays: FCNC decays forbidden @LO.
 NP (in penguins/boxes) could modify Wilson coefficients.
- Complementary info: S/P-S $(B^0_s \rightarrow \mu^+ \mu^-)$ vs. V/A-V $(B \rightarrow K^{(*)} \mu^+ \mu^-)$ interactions.
- Reliable BR predictions within the SM for $\mathscr{B}(B^0_{s} \rightarrow \mu^{+}\mu^{-})$.

16

48%

18%

1.2-3.3 σ

 $5.6 - 8.0\sigma$

50%

21%

13%

11%

300 (barrel)

3000 (barrel)

346

2250

42

271

$B^0 \rightarrow K^* \mu^+ \mu^-$

• Search for deviations of BR, F_L (frac. of K* longitudinal. Pol.) and A_{FB} ($\mu^+\mu^-$ F-B asym.) from SM in bins of $q^2 = m_{\mu\mu}^2$.

• B properties @ CMS -- Ivan Heredia

THE XYZ S

- More than 20 cc-like and bb-like states that do not fit the qq picture discovered in B-fact., Tev., & LHC.
- Most happen to be near a 2-meson threshold.
- Most important: Z(4430)[±] → ψ(2S)π[±] by Belle (2008), confirmed by LHCb (2014) to be a proper BW resonance by Argand diagram.

Z(4430)

20

18

40 E

X(3872) PROMPT PRODUCTION IN pp

Already observed by LHCb, but measured only σ_{inclusive} (P+NP).

Results ($\sqrt{s} = 7 \text{ TeV}$)

- Unpolarized $J^{PC} = 1^{++}$ state assumed.
- Fraction of X(3872) coming from b hadrons (NP) is $0.263 \pm 0.023 \pm 0.016$.

19

- Solution: P_T is the provided the provide
- **WRQCD** predictions (assuming $c\overline{c}$) for P fraction is evidently off.
- $\stackrel{\scriptstyle \sim}{=} R = 0.0656 \pm 0.0029 \pm 0.0065$, where

 $R = \frac{\sigma(\text{pp} \to X(3872) + \text{anything}) \cdot \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\sigma(\text{pp} \to \psi(2S) + \text{anything}) \cdot \mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)}$ $10 < p_{\text{T}} < 50 \text{ GeV and } |y| < 1.2$

XYZ STATES INTERPRETATION

- PDG names all non-qq candidates X(mass). Theorists/exps. use Z for charged states, Y for 1⁻⁻ states, and X for the rest.
- Two popular interpretations:
 - Meson-meson "molecule": two white states loosely bound by a pion exchange.
 - Compact tetraquark: made of a diquarkantidiquark pair connected by color forces.

NEW EXOTIC STATE X(5568)

$X(5568) \rightarrow B^{0}_{s}\pi^{\pm}$

X(5568) PRODUCTION RATE WHAT IS IT?

PRL 117, 022003 (2016)

• Production rate (for comparisons to others): normalize to B^0_s

$$R_X = \frac{\sigma(X) \cdot \mathcal{B}(X(5568) \to B_s^0 \pi^{\pm})}{\sigma(B_s^0)} = (8.6 \pm 1.9 \pm 1.4)\% \qquad \begin{array}{l} 10 < p_T(B_s) \\ < 30 \,\text{GeV} \\ |\eta| < 2 \end{array}$$

Of all produced B_{s}^{0} , about 9% comes from X decaying to $B_{s}^{0} \pi^{\pm}$. Really?! A strange charged beauty.

 Unique: only XYZ state of four different quarks, mass determination dominated by one heavy quark

Loosely Bound Hadronic Molecule?

could be analog of $a_0(980): [\bar{s}\bar{d}][us]$ replace $s \Rightarrow b$: $[\bar{s}\bar{d}][ub]$

• If $X(5568)^- \to B_s^0 \pi^-$ • If $X(5617)^- \to B_s^{0*} \pi^ \downarrow \to B_s^0 \gamma$ miss! then $J^P = 1^+$ could be analog of $Z_b^+: [\overline{b}\overline{d}][ub]$ replace $\bar{b} \Rightarrow \bar{s} : [\bar{s}\bar{d}][ub]$

2016/08/05

Search for the *X*(5568) state in $B_s^0 \pi^{\pm}$ decays CMS Physics Analysis Summary

- Analysis strategy closer to DØ approach:
 - $B_s^0 \rightarrow J/\psi \phi$: ~10x more events.
 - Same kinematic region (rapidity & рт).

	B _s ⁰ yield		
	D0	LHCb	CMS
A STATE	5.6K	112K (pT _{Bs} >5GeV)	51K
To be the	pT _{Bs} >10GeV	44K (pT _{Bs} >10GeV)	(pT _{Bs} >10GeV)

CMS RESULTS NO X(5568)

. .

`S ′

No excess is seen

PRELIMINARY CMS RESULTS

CMS PAS BPH-16-002

 $\rho_X < 3.9\% \ at \ 95\% \ CL \quad \text{CMS: } p_{\text{T}}(\text{B}^{\text{o}}_{\text{s}}) > \text{10 GeV \& |y|} \lesssim 2$

Compare to:

systematics included

 $\rho_X^{\text{LHCb}}[p_T(B_s^0) > 5 \text{ GeV}] < 0.011 (0.012)$ $\rho_X^{\text{LHCb}}[p_T(B_s^0) > 10 \text{ GeV}] < 0.021 (0.024)$

at 90 (95)% C.L. LHCb 2 < |y| < 4.5

 $\rho = (8.6 \pm 1.9 \pm 1.4)\%.$

DØ: p_T(B⁰_s) > 10 GeV & |y| ≤ 2

PENTAQUARKS AT LHCb

26

FITTING CODE

- Signal model was ported to RooFit.
- Programming optimized for fast evaluation and negligible precision loss.
- RooFit generates pseudoexperiments.
- RooFit performs 5D integration numerically (or can use "advertised" integrals).
- Fitting tests ongoing in CPUs and CUDA Cores.

ANGULAR PROJECTIONS

USING ROOFIT

LHC SCHEDULE

 The HL-LHC running starts in 2025 and continues beyond LS4 until 2035

Bottom physics @ CMS, Ivan Heredia, MWPF-2015

Summary

- The CMS experiment has produced several competitive results related to production, branching ratios, CPV, lifetimes, polarizations, and other properties of B hadrons.
- CMS will continue studying the $B^0{}_s$ system to search for anomalous CPV using decays to $J/\psi K^+K^-$ and $J/\psi \pi^+\pi^-$ with 13 TeV data.
- The B_c, B-baryon, quarkonium and exotic hadrons program will also continue and benefit from the additional data in Run II.
- The observation of $B^0 \rightarrow \mu^+\mu^-$ is one of the main long term goals of CMS. Detector upgrades will improve its sensitivity.
- Similarly, b → s µ⁺µ⁻ analyses are now within the core of the CMS B physics program. Special trigger paths have been incorporated for their detailed study with 13 TeV data.