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• FFs are required in a pQCD 
calculation to consistently absorb 
collinear parton-parton singularities. 

• The only way to extract them is from 
fitting experimental data. 

• FFs fits assume factorisation and 
universality.

—Motivation—
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• DSS fit arrived to a data-driven separation of 
individual parton-to-pion fragmentations. 

• Large charge symmetry violation between u- 
and d-quarks FFs (~10%). 

• Gluon FFs was constrained for the first time 
with BNL-RHIC data. 

• Lagrange multiplier technique was used for 
estimating uncertainties.

DSS results
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• Input for helicities PDFs 
and transverse momentum 
PDFs. 

Why are they needed for ?
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• Input for helicities PDFs 
and transverse momentum 
PDFs. 

• Necessary for a complete 
understanding of hadron 
production in presence of 
nuclear medium.  

• Heavy Ion programs: RHIC 
and LHC.

Why are they needed for ?
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The fitters

• AKK08: e+e- and pp data / Isospin symmetry for pions. 

• HKNS: e+e- data only / Hessian method for uncertainties. 4



—Theory & Uncertainties—
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• Theory framework: “independent fragmentation”. 
• QCD approach based on factorisation. 
• e+e-: first data used for extracting FFs with LEP 

data (BKK ’95 and KRE ’00).
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Properties of FFs

• The evolution of FFs is described with the DGLAP type scale evolution:
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• Energy-momentum sum rule:

• A parton fragments into something preserving its momentum 
with 100% probability. 

• Mass effects neglected.
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FFs in data: e+e- SIA
• The distribution is given terms of the structure functions,

@NLO

• Not possible to separate charge and flavour only with SIA. 

• Only have information of the singlet.
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• Distributions for SIDIS are given by,
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FFs in data: SIDIS

@LO:

@NLO, all coefficients are known:

• Charge and flavour separation is achieved by including SIDIS. 
• However, gluon FF is not well constrained by SIA and SIDIS data.

Altarelli et al. ’79, Furmanski, Petronzio ’82, de Florian, Stratmann, Vogelsang ‘98

8



• Therefore, transverse momentum distribution is given by:

FFs in data: Hadron collisions
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• It also allows charge and flavour separation. 
• It contains large contributions from gluons.

• The general picture is:
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Uncertanties

HESSIAN METHOD
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Goal: Provide Hessian sets to propagate FFs uncertainties.

• Idea: Explore the vicinity of the best fit in 
quadratic approximation.

• Caveat: Quadratic approximation is not exactly 
what is used for the global fits, i.e. PDFs too.

• However, it is a good test of the convergence of 
the fitting procedure.
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• Number of parameters: 23 parameters > 28 parameters. 

• HERMES data are replaced and added deuteron target data 
sets. 

• Different treatment for the normalisation of the experiments. 

• PDFs: MSTW2008. 

• Relaxing  some of the FFs assumptions. 

• Full correlation matrices are not available for some data sets, 
so errors are added in quadrature (stat & syst).
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DSS vs the new fit
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• pT cut in 5 GeV for pp data. 
• We have used a penalisation to the chi^2 when the fit goes 

far from the optimum value,

• Normalisation of each experiment can be computed 
analytically,
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DSS vs the new fit
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—Results—
• New data from PHENIX and STAR 

(Phys.Rev.C81(2010)064904; PRL 108(2012)072302;…). 

• Data from the LHC (Phys.Lett.B717(2012)162;1307.1093;…). 

• e+e- data from BELLE(1301.6183) and BaBar (1306.2895). 

• SIDIS multiplicities from COMPASS (1307.3407). 

• Final SIDIS multiplicities from HERMES (1212.5407).
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• They cover an unexplored high region of z. 

• BELLE has the finest binning and reach values of z > 0.8 

• Experimental measurements are determined with extreme 

accuracy. 

• BELLE and BaBar helps to constraint the singlet of FFs 

but due to the c.m.s. (sqrt(s)=10.5 GeV) it will contribute 

mainly to the photon exchange channel. 

• Partial flavour separation.

e+e- data: BELLE and BaBar
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• BELLE and BaBar results 
can be fitted extremely 
well within the 68 and 90 
% C.L. 

• There is a drop on the 
large z regime for BELLE 
but it is consistent with 
the uncertainties. 

• Large logarithmic 
corrections are expected at 
large values of z.

BELLE & BaBar
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• HERMES  published their data sets and they included 
the data for a deuteron target. 

• COMPASS data is still preliminary (but they have shown 
pions multiplicities at DIS2013, arXiv:1307.3407) but it is 
extremely important to consider it for the charge and 
flavour separation. 

• SIDIS produce positively and negatively charge pions in 
a different rate when the target is changed.

SIDIS data: HERMES and COMPASS
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• DSS cannot fit the 
new HERMES data 
for the smallest bin 
of z. 

• In this new 
analysis, HERMES 
data have no 
problems to be 
fitted within the 68 
and 90% C.L. for all 
bins of z.

HERMES

17



• DSS also has some 
tensions with 
COMPASS data sets. 

• For all values of z, 
COMPASS is well 
fitted. 

• It is been shown also 
in the chi^2 ~ 1.01.

COMPASS
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• DSS use mainly of the PHENIX data for neutral pion 
production at mid rapidity 

• We added the data from the STAR collaboration for 
neutral and charged pions and also from the LHC 

• Tension between RHIC and LHC data is largely 
resolved when a pT cut in 5 GeV for pp data is taken

pp data: PHENIX and STAR

19



PDF 
uncertainties 
where 
computed 
with 90%CL 
MSTW and 
they are less 
significant 
than the scale 
ambiguities.

PHENIX & STAR
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• In the range of small pT, RHIC and 
LHC data showed a tension during the 
fitting. 

• By introducing the cut on the pT, we 
achieved a reasonable agreement 
between both data sets. 

• Nevertheless, we lost some data sets 
such as ALICE 900GeV which only 
stands with one point. 

• Contribution of uncertainties due to 
PDF are again not relevant enough; 
the main contribution is coming from 
the scale variation.

ALICE
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•Deviations from DSS 
is found on the gluon 
and charm FF. 

•c-FF has a more 
flexible 
parametrisation (5 
instead of 3 
parameters). 

•g-FF uncertainties is 
about 20% at 90%CL 
up to z > 0.5 and they 
increase towards larger 
values (Q = 10 GeV).

parton-to-pion FFs
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FFs @ Q = Mz
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eigenvector directions
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Hessian method & convergence
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• The numerical results shown that the breaking of the charge 
asymmetry parameter is very close to one. 

• Bigger deviations from DSS is found on the gluon and charm 
FF. 

• Charm FF has a more flexible parametrisation (5 instead of 3 
parameters). 

• Gluon FF uncertainties is about 20% at 90%CL up to z > 0.5 and 
they increase towards larger values (Q = 10 GeV). 

• ALICE data contribute with a large chi^2 due to the 
normalisation shift.

Comments on the FFs
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DSS NOW

Global

LEP-SLAC

BELLE & BABAR

HERMES

COMPASS

RHIC

LHC

843/392(2.15)

500.1/260(1.92)

188.2/64(2.94)

160.8/68(2.36)

—

—

—

1154.6/973(1.19)

412.6/260(1.58)

90.4/123(0.73)

175/128(1.36)

45.7/53(0.86)

27.7/11(2.51)

403.2/398(1.01)

How good is the fit ?
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• The analysis implemented strongly supports factorisation and 
universality for the parton-to-pion FFs.  

• The numerical results shown that the breaking of the charge 
asymmetry parameter is very close to one. 

• Tension between RHIC & LHC data have been avoided when a 
lower cut is introduced in the proton-proton collisions. 

• The new data do not favor any symmetry violation. 

• Uncertainties have been estimated using the standard iterative 
Hessian method. 

• An analytic procedure to determine the optimum normalisation 
shift is implemented in the the new analysis.

—Conclusions—
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