Ultra-peripheral collisions (UPCs)

Or The growth with energy of exclusive J/Ψ and Y photoproduction cross-sections and BFKL evolution

or some QCD theory

Martin Hentschinski martin.hentschinski@gmail.com

based on:

I. Bautista, A. Ferndandez Tellez, MH. [arXiv:1607.05203] (PRD 94 054002)

LHC: the most energetic photon source ever built

photon induced collisions at the TeV scale

- two ions (protons) pass each other with impact parameters b > 2 R→ hadronic interactions strongly suppressed
- high photon flux ~ Z² well described by Weizsäcker-Williams approximation (electromagnetic field = a beam of quasi real photons)

otoporto the proton at small x

- exclusive photo production
 Xsec. of J/Psi ~ gluon²
- ultra small x ~ region
 10⁻²-10⁻⁵ accessible at the LHC
- UPC vector meson production (VM) = a tool to access the potentially saturated proton

shown: ALICE data (arXiv: 1406:7819) and HERA data (ep scattering)

kinematics

- energy squared W²=(p + q)²
 t: momentum transfer
- probe proton and therefore gluon at $x = M_{VM}^2/(W^2 m_p^2)$
- HERA constrains gluon down to x=10⁻⁴,
 UPCs: gain order of magnitude → learn about the low x gluon

and explore (maybe?) a new regime: saturation?

- gluon distribution grows like a power at low x
- at some x: low density approximation invalid, patrons "overlap", recombination effects
- consequence: growth with 1/x slows down

already reached in UPCs at LHC? (saturation models describe data ...)

 $Y = \ln 1/x$

low x evolution (very schematic)

- P BFKL: ∂_{In1/x} G(x, k) = K⊗G
- P BK: ∂_{In1/x} G(x, k) = K⊗G - G⊗G
- K: the BFKL kernel
 LL: [Fadin, Kuraev, Lipatov; PLB 60 (1975) 50], [Balitsky, Lipatov, SJNP (1978 822)]
 NLL: [Fadin, Lipatov; PLB 429 (1998) 127]; [Ciafaloni, Camici; PLB 430 (1998) 349]
- BFKL = low density limit of BK evolution

Question: Can BFKL evolve 'HERA gluon' to LHC values and describe UPC data on VM production or do already require non-linear effects?

The underlying NLO BFKL fit

	virt. photon impact factor	$Q_0/{ m GeV}$	δ	\mathcal{C}	$\Lambda_{\rm QCD}/~{\rm GeV}$
fit 1	leading order (LO)	0.28	8.4	1.50	0.21
fit 2	LO with kinematic improvements	0.28	6.5	2.35	0.21

Martin Hentschinski (BUAP)

Good description of cominbed HERA [H1 & ZEUS collab. 0911.0884]

idea: use BFKL HERA fit & apply it to UPC data

task: relate **exclusive** photoproduction to **inclusive** gluon distribution (*use DGLAP procedure*)

The framework of this BFKL study

procedure:

a) calculate diff. Xsec. at t = 0

→ *exclusive* scattering amplitude can be expressed through *inclusive* gluon distribution

b) parametrize t dependence
$$\frac{d\sigma(t)}{dt} = \frac{d\sigma(t=0)}{dt} \cdot e^{-|t|B_D(W)},$$

slope $B_D(W) = b_0 + 4\alpha' \ln \frac{W}{W_0} + \text{fix parameters by (HERA) data}$
(here: values proposed by [Jones, Martin, Ryskin, Teubner; 1307.7099, 1312.6795])

$$\rightarrow \text{ cross-section: } \sigma^{\gamma p \to V p}(W) = \underbrace{\frac{1}{B_D(W)}}_{\text{phenomenological }} \underbrace{\frac{d\sigma^{\gamma p \to V p}}{dt}}_{\text{BFKL / theory}}$$

Martin Hentschinski (BUAP)

relate 2 pictures of the BFKL Pomeron

a) exclusive photo-production of vector mesons:

b) proton structure functions:

'uncut' Pomeron: diffractive/elastic scattering (amplitude level)

 $\mathcal{A}(s,t)$

'cut' Pomeron: high multiplicity events (total X-sec.)

$$\sigma_{\mathsf{tot}} = \frac{1}{s} \Im \mathsf{m} \mathcal{A}(s, t = 0)$$

Martin Hentschinski (BUAP)

The setup: diff. Xsec. at t = 0

a) imaginary part of scattering amplitude:

- unintegrated gluon density from NLO BFKL fit to combined HERA data [MH, Salas, Sabio Vera; 1209.1353; 1301.5283]
- impact factor $\gamma \to J/\Psi, \Upsilon$ from light-front wave function used in dipole model studies

[Kowalski, Motyka, Watt; hep-ph/0606272]

b) real part:

 SmA(W², t) dominant, real part can be numerically large
 → recover real part using dispersion relation

Vector mesons & dipole models ...

factorization into light-front wave function & dipole amplitude

e.g. [Kowalski, Motyka, Watt; hep-ph/0606272]

$$\Im \mathsf{m}\mathcal{A}_{T,L}^{\gamma^* p \to V p}(W, t=0) = 2 \int d^2 \boldsymbol{r} \int d^2 \boldsymbol{b} \int_0^1 \frac{dz}{4\pi} \, (\Psi_V^* \Psi)_{T,L} \, \mathcal{N}\left(x, r, b\right),$$

light-front wave function overlap

$$(\Psi_V^*\Psi)_T = \frac{\hat{e}_f e N_c}{\pi z (1-z)} \left\{ m_f^2 K_0(m_f r) \phi_T(r, z) - \left[z^2 + (1-z)^2 \right] m_f K_1(m_f r) \partial_r \phi_T(r, z) \right\}$$

scalar parts of VM wave function: boosted Gaussian wave-functions with Brodsky-Huang-Lepage prescription

$$\phi_T^{1s}(r,z) = \mathcal{N}_T z (1-z) \exp\left(-\frac{m_f^2 \mathcal{R}_{1s}^2}{8z(1-z)} - \frac{2z(1-z)r^2}{\mathcal{R}_{1s}^2} + \frac{m_f^2 \mathcal{R}_{1s}^2}{2}\right)$$

free parameters fixed through normalization condition & leptonic decay width $\Gamma_{e^-e^+}$:

Meson	$m_f/{\sf GeV}$	\mathcal{N}_T	\mathcal{R}^2/GeV^{-2}	$M_V/{\sf GeV}$	$8\mathcal{R}^{-2}/GeV^2$	$rac{1}{4}M_V^2/{ m GeV^2}$
J/ψ	$m_c = 1.27$	0.596	2.45	3.097	3.27	2.40
Υ	$m_b = 4.2$	0.481	0.57	9.460	15.38	22.42

Use parameters obtained by [Armesto, Rezaeian; 1402.4831], [Goncalves, Moreira, Navarra; 1408.1344]Martin Hentschinski (BUAP)BFKL & the growth of the VM Xsec.September 4, 201616 / 31

Ingredients of our study \qquad Impact factor $\gamma \rightarrow V$

From wave functions to impact factors

BFKL study requires impact factor in γ space $\Phi_{V,T}(\gamma)$:

$$\Im \mathsf{m} \mathcal{A}_T^{\gamma^* p \to V p}(W, t = 0) = 2 \int d^2 \boldsymbol{b} \int d^2 \boldsymbol{r} \int_0^1 \frac{dz}{4\pi} (\Psi_V^* \Psi)_T(r) \cdot \sigma_0 N(x, r)$$
$$= \alpha_s (\overline{M} \cdot Q_0) \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \frac{d\gamma}{2\pi i} \int_0^1 \frac{dz}{4\pi} \hat{g}\left(x, \frac{M^2}{Q_0^2}, \frac{\overline{M}^2}{M^2}, Q_0, \gamma\right) \cdot \Phi_{V,T}(\gamma, z, M) \cdot \left(\frac{M^2}{Q_0^2}\right)^{\gamma}$$

can be derived using relation dipole \leftrightarrow unintegrated gluon *e.g.* [Kutak, Stasto; hep-ph/040811]

$$2\int d^2 \boldsymbol{b} \,\mathcal{N}(x,r,b) = \frac{4\pi}{N_c} \int \frac{d^2 \boldsymbol{k}}{\boldsymbol{k}^2} \left(1 - e^{i\boldsymbol{k}\cdot\boldsymbol{r}}\right) \alpha_s G(x,\boldsymbol{k}^2) \,.$$

yields

$$\Phi_{V,T}(\gamma, z, M) = e\hat{e}_f 8\pi^2 \mathcal{N}_T \frac{\Gamma(\gamma)\Gamma(1-\gamma)}{m_f^2} \left(\frac{m_f^2 \mathcal{R}^2}{8z(1-z)}\right)^2 e^{-\frac{m_f^2 \mathcal{R}^2}{8z(1-z)}} e^{\frac{m_f \mathcal{R}^2}{2}} \left(\frac{8z(1-z)}{M^2 \mathcal{R}^2}\right)^{\gamma} \\ \left[U\left(2-\gamma, 1, \frac{m_f^2 \mathcal{R}^2}{8z(1-z)}\right) + [z^2 + (1-z)^2] \frac{(2-\gamma)}{2} U\left(3-\gamma, 2, \frac{m_f^2 \mathcal{R}^2}{8z(1-z)}\right)\right],$$

[U(a, b, z) hypergeometric function of the second kind or Kummer's function]

Martin Hentschinski (BUAP)

The setup: diff. Xsec. at t = 0

a) imaginary part of scattering amplitude:

- ✓ unintegrated gluon density from NLO BFKL fit to combined HERA data [MH, Salas, Sabio Vera; 1209.1353; 1301.5283]
- ✓ impact factor $\gamma \rightarrow J/\Psi, \Upsilon$ from light-front wave function used in dipole model studies
- b) real part:
 - ✗ ℑmA(W², t) dominant, real part can be numerically large
 → recover real part using dispersion relation

▶ for t = 0 the (pseudo-)inclusive process fixes imaginary part of A(W², t = 0) of the exclusive process;

• Common approach:
$$\frac{\Re e \mathcal{A}(W^2, t)}{\Im m \mathcal{A}(W^2, t)} = \tan \frac{\lambda \pi}{2} \text{ , with } \lambda = \frac{d \ln \mathcal{A}(W^2, t)}{d \ln W^2}$$

follows from analytic representation of scattering amplitudes of (scalar) particles in the Regge limit for positive signature

• Often: $\lambda = \text{const.} \rightarrow \text{constant ratio of real & imaginary part}$

Martin Hentschinski (BUAP)

Real part from imaginary part

here: reconstruct real part through using representation in $\omega\text{-Mellin}$ space, conjugate to W^2 :

$$\mathcal{A}(W^2, t) = \int_{\delta - i\infty}^{\delta + i\infty} \frac{d\omega}{2\pi i} \left(\frac{1}{x}\right)^{\omega} \left(i + \tan\frac{\omega\pi}{2}\right) a(\omega, t), \quad x = \frac{M_V^2}{W^2 - m_p^2}$$

partial wave $a(\omega, t)$ can be fixed from imaginart part

$$a(\omega,0) = \alpha_s \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{d\gamma}{2\pi i} \left(\frac{M^2}{Q_0^2}\right)^{\gamma} \int_{0}^{1} \frac{dz}{4\pi} \Phi_{V,T}(\gamma,z) \frac{\mathcal{C}\cdot\Gamma(\delta-\gamma)}{\pi\Gamma(\delta)} \cdot \left\{\frac{1}{\omega-\chi\left(\gamma,\frac{\overline{M}^2}{M^2}\right)} + \frac{\bar{\alpha}_s^2\beta_0\chi_0\left(\gamma\right)/(8N_c)}{\left[\omega-\chi\left(\gamma,\frac{\overline{M}^2}{M^2}\right)\right]^2} \left[-\psi\left(\delta-\gamma\right) - \frac{d\ln\left[\Phi_{V,T}(\gamma,z)\right]}{d\gamma}\right]\right\}$$

yields *energy dependent* ratio of real & imaginary part

Martin Hentschinski (BUAP)

Comparison to data

- provide results for both HERA fits (standard (fit 1) & kinematic improved (fit 2) LO impact factor)
- hard scale M^2 :
 - photoproduction scale $M_{\rm pp}=M_V/2$

$$\begin{split} & \left(M_{\rm pp}^2 \right)_{J/\Psi} = 2.40 \ {\rm GeV^2} \\ & \left(M_{\rm pp}^2 \right)_{\Upsilon} = 22.42 \ {\rm GeV^2} \end{split}$$

- impact factor motivated: $M_{if}^2 = 8\mathcal{R}_V^{-2}$ – eliminates $(...)^{\gamma}$ factor & minimizes NLO running coupling correction related to impact factor

$$\begin{split} & \left(M_{\rm if}^2 \right)_{J/\Psi} = 3.27 \ {\rm GeV^2} \\ & \left(M_{\rm if}^2 \right)_{J/\Psi} = 15.38 \ {\rm GeV^2} \end{split}$$

- (hard) running coupling scale $\overline{M} = M$, but vary in range $[M^2/2, M^2 \cdot 2]$ to check stability of result
- ▶ fix normalization by low energy ALICE (J/Ψ) and H1 (Υ) data point \rightarrow K-factor

22 / 31

Results & Conclusions

Martin Hentschinski (BUAP)

Caveats

- both BFKL HERA fit & VM photoproduction use LO impact factor
 large corrections at NLO possible
- ► BFKL HERA fit for $n_f = 4$ mass-less quarks

both effects should affect the normalization, not so much $W\mbox{-dependence}$

• unintegrated gluon density can develop instability at ultra-small x:

$$G\left(x, \boldsymbol{k}^{2}, M\right) = \frac{1}{\boldsymbol{k}^{2}} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \frac{d\gamma}{2\pi i} \hat{g}\left(x, \gamma\right) \left(\frac{\boldsymbol{k}^{2}}{Q_{0}^{2}}\right)^{\gamma}$$
$$\hat{g}(x, \gamma) \sim \left(\frac{1}{x}\right)^{\chi\left(\gamma, \frac{\overline{M}^{2}}{M^{2}}\right)} \cdot \left\{1 + \frac{\bar{\alpha}_{s}^{2} \beta_{0} \chi_{0}\left(\gamma\right)}{8N_{c}} \log\left(\frac{1}{x}\right) \left[-\psi\left(\delta - \gamma\right) + \log\frac{M^{2}}{Q_{0}^{2}} - \partial_{\gamma}\right]\right\},$$

▶ will enter at some point region \(\alpha_s^2 \ln(1/x) \lambda 1\) → control of such terms will become necessary

Martin Hentschinski (BUAP)

instead of conclusions: final considerations

- the given description is the most straight-forward: take HERA fit, calculate necessary impact factor/coefficient, evolve to lower x
 → works very good without tuning etc.
- Question: do we hide on-set of saturation in the linear NLO term? Answer: We don't know
- Way out 1: re-fit HERA data with BFKL Green's function which provides eternal growth (if possible) and see what happens
- Way out 2: Look at different observables ...

inclusive DIS, exclusive photoproduction: ~ to N(x,r,b)(dipole amplitude= prob. to scatter with proton gluon field)

p (quad.)

Au (lin.)

Au (quad.)

 $\frac{2\pi}{3}$

 π

 $\theta_{\bar{q}g}$

 $\frac{\pi}{3}$

 $\frac{4\pi}{3}$

 $\frac{5\pi}{3}$

 2π

$$\Im \mathsf{m}\mathcal{A}_{T,L}^{\gamma^* p \to Vp}(W, t=0) = 2 \int d^2 \mathbf{r} \int d^2 \mathbf{b} \int_0^1 \frac{dz}{4\pi} \left(\Psi_V^* \Psi \right)_{T,L} \mathcal{N}(x, r, b)$$

2.0

1.0

0.5

0.0

0

 $3\frac{2\pi}{3}$

 $\left(\, heta_{qg} = \,
ight.$

 $\frac{1}{\sigma}\frac{d\sigma}{d\theta_{\overline{q}g}}\left(\right.$

recent theory study:

[Ayala, MH, Jalilian-Marian, Tejeda-Yeomans, arXiv:1604.08526] 3 parton production in DIS

involves higher correlators \rightarrow in Gaussian approximation as function of N(x,r) + expand O(N²)

there are potential similar processes in UPCs \rightarrow need to explore, can be measured? ...

extra slides

Results & Conclusions

Observations:

- K-factor: small for fit 2, sizeable for fit 1 – likely related to the impact factors in used in the HERA fit (massless, $n_f = 4$, $(C_1/C_2)^2 = 2.45$)
- common correction not included: GPD motivated factor to take into account $x' \neq x$; currently calculated for collinear pdf [Shuvaev, Golec-Biernat, Martin, Ryskin, hep-ph/9902410] \longrightarrow to be calculated for k_T factorized BFKL impact factor

very good description of W-dependence

 $W_{J/\Psi} > 471 \text{ GeV } \& W_{\Upsilon} > 669 \text{ GeV} \equiv \text{beyond region of incl. HERA fit}$ (from $x = 4.3 \cdot 10^{-5}$ to $x = 3.5 \cdot 10^{-6}$) \longrightarrow direct test of BFKL evolution

Existing description of data

... work pretty well

- J/Ψ : power-law fit to HERA data $\sigma \sim W^{0.67}$ [LHCb Collaboration; 1401.3288]
- collinear factorization: NLO fits [Jones, Martin, Ryskin, Teubner; 1307.7099]
- saturation models: IPsat, bCGC, rcBK

[Armesto, Rezaeian; 1402.4831], [Goncalves, Moreira, Navarra; 1405.6977, 1408.1344]

See also [Fiore, Jenkovszky, Libov, Machado; 1408.0530], [Cisek, Schäfer, Szczurek; 1405.2253]

BFKL special:

don't fit W -dependence, but calculate from perturbative low x evolution don't evoke saturation (= effects beyond BFKL)

LHC: reach ultra-small x values $\simeq 4 \cdot 10^{-6}$ not constrained by HERA

The setup: diff. Xsec. at t = 0

a) imaginary part of scattering amplitude:

- unintegrated gluon density from NLO BFKL fit to combined HERA data [MH, Salas, Sabio Vera; 1209.1353; 1301.5283]
- impact factor $\gamma \to J/\Psi, \Upsilon$ from light-front wave function used in dipole model studies

[Kowalski, Motyka, Watt; hep-ph/0606272]

b) real part:

 SmA(W², t) dominant, real part can be numerically large
 → recover real part using dispersion relation

Ingredients of our study Impact factor $\gamma \to V$

The setup: diff. Xsec. at t = 0

a) imaginary part of scattering amplitude:

calculate diff. Xsec. at t = 0

 ✓ unintegrated gluon density from NLO BFKL fit to combined HERA data [MH, Salas, Sabio Vera; 1209.1353; 1301.5283]

× impact factor $\gamma \rightarrow J/\Psi, \Upsilon$ from light-front wave function used in dipole model studies

Χ ...

Observations

- K-factor small for fit 2, sizeable for fit 1 likely related to the impact factors used in the HERA fit (massless quarks, $n_f=4$, $(C_1/C_2)^2=2.45$)
- common "GPD" correction not included; known for collinear pdf, need to be re-calculated within high energy factorization
- very good description of W-dependence, going beyond HERA region