Systematic study of high p_T hadron production in small collision systems by the PHENIX experiment at RHIC

ALVII International Symposium on Multiparticle Dynamics (ISMD2017) September 11-15, 2017, Tlaxcala City, Mexico Takao Sakaguchi

Brookhaven National Laboratory For the PHENIX Collaboration

T. Sakaguchi, ISMD2017

QUARK-GLUON

10¹⁵

BROOKHAVEN

Quark Gluon Plasma (QGP)

- Partonic (quarks and gluons) matter believed to have existed in the early Universe.
- QGP formation by colliding heavy ions at high energies (RHIC, LHC, etc.)
- Confirmation of its formation by comparing with the system known not to form QGP
 - p+p, p+A collisions
 - Particle flow, high p_T hadron suppression, etc.

 $\propto [1 + 2v_2(p_T)\cos 2(\varphi - \phi_{RP}) + \dots]$ $p_T dp_T dy d\varphi$

FEMPERATURE (DEGREES KELVIN) PLASMA 10¹² HADRONIZATION 10⁹ 띑 NUCLEOSYNTHESIS 10⁶ 10³ ATOMS FORMED NOW 10^{-6} 10^{-3} 1 10^{3} 10^{6} 10^{9} 10^{12} 10^{15} 10^{18} 10^{21} TIME AFTER BIG BANG (SECONDS) $R_{AA} = \frac{\left(d^{3}N/dp^{3}\right)_{AA}}{\left(N_{coll}/\sigma_{inel}\right)\left(d^{3}\sigma/dp^{3}\right)_{nn}}$ 4 ₽ ₽ ₽ π⁰, PRL 101, 232301(2008) Au+Au Minimum Bias √s_{NN} = 200 GeV ۶ PHENIX 0.8 $\pi^{0} R_{AA}$ 0.6 0.4 0.2

10

PRC82, 011902(R) (2010)

12 14

18

16

20 22

9/12/2017

p_{_} (GeV/c)

T. Sakaguchi, ISMD2017

Small system ~was simple and a baseline~

- Why were we interested in small system collisions (i.e., $p/d/^{3}$ He+Au):
 - To confirm the high- p_T hadron suppression in Au+Au is due to final state effects (QGP), and not cold nuclear matter (CNM) effects.
 - CNM effects include: k_T broadening, shadowing, CNM energy loss, ...
- Measured R_{dAu} :

- Jets/hadrons and direct photons in minimum bias *d*+Au collisions are consistent with unity up to high-p_T
- As expected from parton distribution function (EPS09).

BROOKHAVEN

Small system is no longer simple

- Jets R_{dA} shows strong centrality dependence
 - Suppression in most central, enhancement in most peripheral
- Strong flow like A+A is seen in most central *d*+Au collisions
 - Similar observation by the LHC experiments
 - We didn't anticipate "flow" in a small system like p/d+A

BROOKHAVEN

Journey to new worlds

- Initial state effects, e.g. CGC, will affect to production cross-section of particles and their orientation
- Mini-QGP production?
 - Final state effects, e.g. hydrodynamics will produce flow-like structure
- If there is QGP, detail investigation of the interaction of partons with the medium will give insight on its characteristics
- Systematic study of the leading hadron spectra in small systems will help

BROOKHAVEN

PHENIX detector and dataset

- Integrated luminosities, triggered by BBC:
 - Year-3 and -8 d+Au: 2.74 μ b⁻¹ (1.1 pb⁻¹ pp-equiv), 80 μ b⁻¹ (32.1 pb⁻¹ pp-equiv)
 - Year-14 ³He+Au: 25 nb⁻¹ (15 pb⁻¹ pp-equiv)
 - Year-15 p+Au, p+Al: 80 nb⁻¹ (16 pb⁻¹ pp-equiv), 275 nb⁻¹ (7.4 pb⁻¹ pp-equiv.)
- Particle identification and tracking:
 - π^0 by Electromagnetic Calorimeter in central arm ($|\eta| < 0.35$)
 - Hadrons by muon arms $(3.1 \le |\eta| \le 3.9)$

Event trigger and bias

- Min. Bias trigger has inefficiency
 - Measured BBC charge distribution was compared with a Glauber Monte Carlo simulation folded with a negative binomial distribution (NBD)
- Trigger efficiency is determined as <u>88%</u>.
 - Same for $p/d/{}^{3}$ He+Au
- Bias factors (BF) for centrality selection are calculated
 - Bias is coming from auto-correlation between high p_T particle in mid-rapidity and backward multiplicity (where centrality is determined)

Cent (%)	0-20	20-40	40-60	60-88	0-100
<i>p</i> +Au BF	0.90	0.98	1.02	1.00	0.86
d+Au BF	0.94	1.00	1.03	1.03	0.89
³ He+Au BF	0.95	1.02	1.02	1.03	0.89

d+Au Centrality (%)

BROOKHAVEN

Nuclear modification factors for min. bias

- Comparison of the $R_{p/d/He+Au}$ for three collision systems
 - Enhancement at $p_T = 5 \text{ GeV/c}$ indicates a system size dependence
- Some hint of suppression at higher $p_T (p_T > 10 \text{GeV/c})$?

BROOKHAVEN

- Nuclear modification in centralities:
 - Centrality determined similarly as for large systems (PRC90,034902)
- *p*+Au results show large centrality dependence

9/12/2017

BROOKHAVEN

$R_{p/d+Au}$ vs centralities

- Nuclear modification in centralities:
 - Centrality determined similarly as for large systems (PRC90,034902)
- *p*+Au results show large centrality dependence
- d+Au results agree with p+Au at high-p_T

T. Sakaguchi, ISMD2017

BROOKH*r*vei

- $R_{p/d/^{3}He+Au}$ vs centralities
- πº, |η|<0.35, √s_{NN} = 200 GeV πº, |η|<0.35, √s_{NN} = 200 GeV Global uncertainty 9.7% Global uncertainty 9.7% PH^{*}ENIX **PH**^{*}ENIX preliminary preliminary 1.5 1.5⊢ $R_{p/d/^3He+Au}$ $\mathsf{R}_{\mathsf{p/d/^3}\mathsf{He+Au}}$ 0.5 • p+Au, 0-20%, prelim. 0.5 • p+Au, 20-40%, prelim. d+Au, 0-20%, PRL98, 172302 d+Au, 20-40%, PRL98, 172302 • ³He+Au, 0-20%, prelim. • ³He+Au, 20-40%, prelim. p_ [GeV/c]¹⁵ p_{_} [GeV/c]¹⁵ 0 5 20 20 πº, |η|<0.35, √s_{NN} = 200 GeV πº, |η|<0.35, √s_{NN} = 200 GeV Global uncertainty 9.7% Global uncertainty 9.7% **PH**^{*}ENIX **PH**^{*}ENIX 1.5 preliminary 1.5 preliminary $\mathsf{R}_{\mathsf{p/d/^3He+Au}}$ ${\sf R}_{{\sf p/d}^3{\sf He+Au}}$ 0.5 • p+Au, 40-60%, prelim. p+Au, 60-84%, prelim. 0.5-• d+Au, 60-88%, PRL98, 172302 d+Au, 40-60%, PRL98, 172302 • ³He+Au, 40-60%, prelim. ³He+Au, 60-88%, prelim. p_{_} [GeV/c]¹⁵ p_T [GeV/c]¹⁵ 20 0 20 11

- XLVII International Symposium on Multiparticle Dynamics (ISMD2017) September 11-15, 2017, Tlaxcala City, Mexico
- Nuclear modification in centralities:
 - Centrality determined similarly as for large systems (PRC90,034902)
- *p*+Au results show large centrality dependence
- *d*+Au results agree with p+Au at high- p_T
- ³He+Au results agree with *p*+Au and *d*+Au at high-p_T
- At moderate p_T an ordering is seen as a function of systems

BROOKHAVEN

Integrated R_{AA} in *d*+Au and ³He+Au

- At higher N_{part} , d+Au and ³He+Au show very similar N_{part} dependence
- At lower N_{part} , d+Au collisions show more enhancement
 - More Cronin effect, or less suppression (energy loss)

BROOKHAVEN

Integrated R_{AA} in $p/d/^{3}He/Au+Au$

- Integrated R_{AA} for $p/d/^{3}$ He/Au+Au
- R_{AA} from all three systems converge for N_{part}>~12
 Similar <u>hot</u> matter is produced?
- System ordering of R_{AA} is seen for $N_{part} < 12$ is seen; $R_{pAu} \sim R_{dAu} > R_{HeAu} > R_{AuAu}$

Cold nuclear energy loss?

- Different energy loss scenarios (no, small or moderate) are comparable to the data at high- p_T
- System dependent enhancement change at low-p_T is not reproduced
 - The peak positions are also different
 - Additional parameters to be tuned?

PRD 93, 074030, and priv. comm. with I. Vitev

BROOKHAVEN

Multiple scattering?

- HIJING++ simulation shows similar trend between collision systems
 - Ingredient: multiple scattering + shadowing effect
- HIJING++ predicts the Cronin peak around $p_T = 1.5-2 \text{GeV/c}$
 - Much lower than in the data ($p_T \sim 5 \text{ GeV/c}$)

based on 1701.08496 private comm. with G. Papp

Lessons from model comparison

- Cold nuclear energy loss alone can't describe the trend of nuclear modification factors for $p/d/^{3}$ He+Au collisions
- Multiple scattering + shadowing scenario seems to describe the spectra
 - This scenario predicts **larger** (**smaller**) enhancement in the **forward** (**backward**) in comparison to **mid-rapidity**

BROOKHAVEN

Looking forward and backward

BROOKHAVEN

Looking forward and backward

BROOKHAVEN

p+Au and p+Al results

- Comparison of R_{CP} in same centralities in p+Au and p+Al collisions:
- Forward hadrons shows same suppression
- Backward hadron production show smaller enhancement in *p*+Al than in *p*+Au collisions
- EPS09 tells that the nuclear PDFs are not very different for Au and Al

19

What makes this **backward enhancement**?

BROOKH*r*aven

Possible explanation for p+Au>p+Al

- If it is from mini-QGP, the ridge yield will be higher for larger nucleus

 - i.e., R_{cp}(p+Au)>R_{cp}(p+Al) for η<-1 (PHENIX case)
 π⁰-h correlations show larger (<p²_{out}>)^{1/2} in central p+Au compared to p+Al
 - see, J. Frantz talk
- Does it consistently explain the observed η -dependence of hadron R_{cp} ?

Summary

- p/d+Au system is no longer a baseline or a simple system.
- PHENIX measured high $p_T \pi^0$ at mid-rapidity and hadrons at forward and backward rapidities in *p*+Au, *d*+Au and ³He+Au at $\sqrt{s_{NN}}$ =200 GeV.
 - $R_{p/d/He + Au} < 1$ at high- p_T , and moderate- p_T indicates ordering of $R_{pAu} > R_{dAu} > R_{HeAu}$
- Integrated R_{AA} from p+Au, d+Au, ³He+Au and Au+Au converge for N_{part}>~12.
 System ordering of R_{AA} is seen for N_{part}<12, i.e., R_{pAu}>R_{dAu}>R_{HeAu}>R_{AuAu}.
- Cold energy loss alone can't explain the results
 - Multiple scattering scenario explains it, but is killed by η -dependent result
- Charged hadron R_{CP} in p+Au and p+Al showed that:
 - Backward rapidity is enhanced in both p+Au and p+Al; $R_{pAu} > R_{pAl}$
 - Forward rapidity is suppressed in both p+Au and p+Al; $R_{pAu} = R_{pAl}$
- Both flow and R_{AA} are consistently explained by mini-QGP scenario?

_	XI VII International Symposium on	_					
	ALVII International Symposium on						
	Multiparticle Dynamics (ISMD2017)						
	September 11-15, 2017, Tlaxcala City, Mexico						

BROOKHAVEN

Backup

9/12/2017

BROOKHAVEN

Shrinking nucleon?

- A model including *x*-dependent parton-parton interaction cross-section
 - Effectively shrinking the size of nucleon (PRC 94, 024915 (2016), and priv. comm.)
- The model predicts clear ordering in most central and peripheral collisions
- The predicted trend is not well seen in data

BROOKHAVEN

Dataset collected by PHENIX

BROOKHAVEN

Why were we interested in d+Au collisions?

- In order to confirm the high p_T hadron suppression is due to final state effects, and not cold nuclear matter (CNM) effects
 - Need system without additional effects from a hot medium.
- CNM effects include:
 - k_T -broadening (Cronin enhancement at moderate p_T)
 - Shadowing of parton distributions
 - Cold nuclear matter energy loss
 - And possibly more...
- *d*+Au was more favorable for RHIC operation because of better rigidity match
 - *p*+Au became feasible later

BROOKHAVEN

Ridge evolution in $\pi^{0}\text{-}\text{MPC}$ south / Au-going...

BERTING *DA*UEN

Yield suppression of leading particles

- Nuclear Modification Factor (R_{AA})
 - (Yield in A+A collision)/(Yield in p+p collision \times N_{coll})
 - $R_{AA} = 1$: No nuclear effect
 - $R_{AA} < 1$: Suppression due to energy loss, etc.

BROOKHAVEN

Fractional momentum loss in ³He+Au

- R_{AA} can be rewritten in the form of fractional momentum loss ($\delta p_T/p_T$).
 - Instead of taking ratio of spectra, one can directly measure the spectra shift (δp_T)
- Most central (0-10%) 3 He+Au collisions shows similar R_{AA} as 60-70% Au+Au
 - At same cms energy, same R_{AA} implies same $\delta p_T/p_T$
- $\delta_{p_T}/p_T = \sim 0.03$ in most central ³He+Au collisions

BROOKHAVEN

Looking forward and backward

