Highlights of top-quark measurements in hadronic final states at ATLAS

Serena Palazzo

on behalf of the ATLAS collaboration

XLVII International Symposium on Multiparticle Dynamics

Tlaxcala, Mexico

September 12, 2017

Outline

Outline

- \hookrightarrow Physics motivations
- \hookrightarrow Top-quark pair production mechanisms and decays
- \hookrightarrow Recent measurements:

Top-quark inclusive cross section

- Measurements of the $t\bar{t}$ production cross-section in the τ + jets channel at $\sqrt{s} = 7$ TeV Eur.Phys.J.C(2013)73:2328
- Measurements of the $t\bar{t}$ production cross-section with hadronically decaying τ lepton at $\sqrt{s} = 8$ TeV Phys. Rev. D 95, 072003 (2017)
- Measurements of the $t\bar{t}$ production cross-section with the τ + lepton at $\sqrt{s} = 7$ TeV • CERN-PH-EP-2012-102
- Measurements of the $t\bar{t}$ production cross-section in the all-hadronic channel at $\sqrt{s} = 7$ TeV ATLAS-CONF-2012-031

Top-quark differential cross-sections

- Measurements of the $t\bar{t}$ differential cross-sections in the all-hadronic channel at $\sqrt{s} = 13$ TeV ATLAS-CONF-2016-100
- ↔ Summary

Physics motivations

Why top-quark physics?

 $\ensuremath{\,\,}$ It is the heaviest elementary particle know; $m_t = 173.34 \pm 0.27(stat) \pm 0.71(syst) \ensuremath{\,\,}$ GeV

 ↔ its large mass is a foundamental parameter in the Standard Model ⇒ highest coupling to the Higgs boson;

- \hookrightarrow due its very short lifetime, the top-quark decays before hadronizing $t \Rightarrow Wb \sim 10^{-24}s$ vs hadronization $\sim 10^{-23}s \Rightarrow$ allows to study the properties of a bare quark;
- \hookrightarrow its cross-section is large
 - $m \bullet~\sim 15~tar{t}$ pairs/min, ~ 5 milions $tar{t}$ at 8 TeV with 20 fb^{-1}
 - $\sim 500 \ t\overline{t}$ pairs/min, ~ 30 milions $t\overline{t}$ at 13 TeV with $36 fb^{-1}$

Top-quark pair production

 \rightarrow Top-quark pairs production via strong interactions;

 \hookrightarrow the LO dominant process at \sqrt{s} = 13 TeV at LHC is the gluon-gluon fusion;

Why top pair studies?

- \hookrightarrow Stringent tests of pQCD;
- \hookrightarrow high sensitivity to gluon PDF;
- \hookrightarrow important background to Higgs and BSM processes;
- \rightarrow improvement in MC generators of the $t\bar{t}$ samples.

Top pair decay

 ↔ decay signatures are categorized according to the decay of the two W's, semi-leptonically or hadronically;

Top Pair Branching Fractions

- ↔ All-hadronic: both W's decay via W → qq (46%);
- $\stackrel{\P \rightarrow}{} \ell$ +Jets: one W deacays via W $\rightarrow \ell \nu$ (30%);

 $\stackrel{\hookrightarrow}{\to}$ dilepton: both W's decay via W $\rightarrow \ell \nu$ (4%).

$t\bar{t}$ cross-section in the au + jets channel

 $\tau + \text{jets} : \sqrt{s} = 7 \text{ TeV } \mathcal{L} = 1.67 \text{ fb}^{-1} \bullet \text{Eur.Phys.J.C(2013)73:2328}$ $\tau + \text{jets} : \sqrt{s} = 8 \text{ TeV } \mathcal{L} = 20.2 \text{ fb}^{-1} \bullet \text{arXiv:1702.08839v2}$

- \hookrightarrow Final state with a hadronically decaying au lepton and jets;
- \hookrightarrow such an event topology correspond to $\sim 10\%$ of $t\overline{t}$ decays;
- ↔ this measurement is particularly important for charged Higgs boson production in top-quark decays
 - the existence of a H[±] would lead to an enhancement in the cross-section for the considered tt final state.

$t\overline{t}$ cross-section in the τ + jets channel at $\sqrt{s}=7~{\rm TeV}$

• Eur.Phys.J.C(2013)73:2328

Serena Palazzo

September 12, 2017 7 / 27

τ +jet \sqrt{s} = 7 TeV: Event selection & τ decays

Event selection

 \hookrightarrow Require at least 5 jets with $p_{T}>20\,GeV$ and $|\eta|<2.5$:

- 2 jets having originated from b quark;
- 2 jets from the hadronic decay of one of the top quarks;
- 1 τ_{had} candidate ($p_T > 40 \, GeV$) from the other top-quark.

au decays

- \hookrightarrow Hadronically decaying au in:
 - 1 or 3 charged hadrons in the final state charged hadrons (+ other neutrals);

τ +jet \sqrt{s} = 7 TeV: Data analysis

- ↔ Charged hadrons in the final state can be reconstructed as charged particle tracks in the inner-detector;
- \hookrightarrow number of tracks (n_{tracks}) associated to a τ_{had} used to separate τ_{had} contribution from misidentified jet background;
- \hookrightarrow Signal extraction from the n_{track} distribution \Rightarrow data sample fitted with 3 probability density functions (templates).

n_{track}

τ +jet \sqrt{s} = 7 TeV: Fit results

 \hookrightarrow Binned-likelihood fit to n_{tracks} distribution with three templates.

 $\sigma_{t\bar{t}}=rac{N_{ au}}{\mathcal{L}\cdot\epsilon}\Rightarrow\sigma_{t\bar{t}}=194\,\pm\,18$ (stat.) \pm 46 (syst.) pb

$t\overline{t}$ cross-section in the τ + jets channel at $\sqrt{s}=8~{\rm TeV}$

▶ Phys. Rev. D 95, 072003 (2017)

Serena Palazzo

September 12, 2017 11 / 27

τ +jet \sqrt{s} = 8 TeV: Reconstructed object selection

Event selection

- \hookrightarrow Require 4 jets:
 - \geq 2 jets with E_T > 25 GeV and $|\eta|$ < 2.5;
 - 2 jets having originated from b quark, b-tagging efficiency 70%;
- \hookrightarrow 1 τ_{had} candidate ($E_T > 20 GeV$ and $|\eta| < 2.5$) \Rightarrow decays into 1 or 3 charged particles:
 - single prong $(\tau_{1-prong}) \Rightarrow$ decays to a single charged particle;
 - three prong $(\tau_{3-prong}) \Rightarrow$ decays to a 3 charged particle.

Backround estimation

- \hookrightarrow Events where the τ_{had} in the final state is real;
- $\stackrel{ \ \rightarrow }{\rightarrow} \ \ includes \ \ single \ \ top, \ W/Z+jets, \\ diboson.$
- \hookrightarrow Events where the τ lepton in the final state is fake (misidentified);
- ↔ dominated by multi-jet processes.

12 / 27

τ +jet \sqrt{s} = 8 TeV: Results

$t\overline{t}$ cross-section in the τ + lepton channel at $\sqrt{s}=7~{\rm TeV}$

▶ Phys.Lett. B717 (2012) 89-108

$t\bar{t}$ cross-section in the τ + lepton channel with \sqrt{s} = 7 TeV

au + lepton : \sqrt{s} = 7 TeV \mathcal{L} = 2.05 fb^{-1}

▶ Phys.Lett. B717 (2012) 89-108

- \hookrightarrow Final states with an electron or a muon and a hadronically decaying τ lepton;
- \hookrightarrow searches for top-quark decays to b-quarks + charged Higgs, decaying to τ + neutrino.

Event Selection

- \rightarrow A primary vertex with \geq 5 tracks (each with $p_T > 4 GeV$);
- $\hookrightarrow \geq 1 \; au$ candidate;
- \rightarrow one isolated high- $p_T \mu$ or e;
- $m \hookrightarrow~\geq 2$ jets with $p_{T}>25$ GeV and $|\eta|{<}2.5;$
- $\hookrightarrow E_T^{miss} > 30 \, GeV$ to reduce the multi-jet background.

Signal extraction

- ↔ discriminants employed which outputs are used to separate hadronic tau from jets;
 - use **boosted decision tree** (BDT) discriminants.
- \hookrightarrow Same sign (SS) and opposite sign (OS) BDT_j distributions.

Background methods

↔ Fit BDT shape with background and signal template (template fitting).

		Backgrou	MC		
		0 b-tag	W + 1 jet	Signal	tī
$\mu + \tau$	τ_1	490 ± 40	456 ± 32	432	388
	τ3	135 ± 33	130 ± 50	126	116
$e + \tau$	τ_1	440 ± 50	430 ± 50	388	338
	τ_3	116 ± 32	120 ± 28	114	101
Combined	τ_1	930 ± 70	860 ± 50	820	726
	τ_3	260 ± 60	260 ± 40	239	217

↔ Matrix method to extract background after a cut on BDT > 0.7.

		Background template		
		0 b-tag	W + 1 jet	
$\mu + \tau$	τ_1	460 ± 50	440 ± 50	
	τ_3	130 ± 40	105 ± 35	
$e + \tau$	τ_1	420 ± 60	350 ± 50	
	τ3	140 ± 40	160 ± 40	
Combined	τ_1	880 ± 70	800 ± 70	
	τ3	270 ± 60	260 ± 60	

good agreement with the numbers obtained by the two methods.

Measuring the $t\bar{t}$ cross-section

- \hookrightarrow The cross-section is derived from the number of observed OS-SS signal events in the \geq 1 b-tag data sample;
- \hookrightarrow the results are given separately for τ_1 (one track candidate) and τ_3 (> one tracks candidate) and then combined.

 $\sigma_{t\overline{t}} = 186 \pm 13(stat.) \pm 20(syst.) \pm 7(lumi)pb$

$t\overline{t}$ cross-section in the all-hadronic channel at $\sqrt{s}=7~{ m TeV}$

• ATLAS-CONF-2012-031

Serena Palazzo

September 12, 2017 18 / 27

 $t\bar{t}$ cross-section in the all-hadronic channel with $\sqrt{s} = 7 TeV$

all-hadronic channel :
$$\sqrt{s} = 7 \, TeV \, \mathcal{L} = 4.7 \, fb^{-1}$$

- \hookrightarrow Final state with both W's decaying hadronically, , six jets topology;
- \hookrightarrow such an event topology correspond to $\sim 46\%$ of $t\bar{t}$ decays, large BR but large multi-jet background;
- ↔ important test of pQCD, major background to many new physics scenarios.

Event Selection

Event selection

- $_{
 m \leftrightarrow} \geq 1$ reconstructed primary vertex with 5 or more associated tracks;
- \hookrightarrow all jets reconstructed with |JVF| < 0.75;
 - \geq 5 jets with p_T > 55 GeV and $|\eta|$ < 2.5;
 - \geq 1 additional jet with p_T > 30*GeV* and $|\eta|$ < 2.5;
 - \geq 2 of the jets should be b-tagged and have $p_T > 55\,GeV$ and $|\eta| < 2.5$.

Systematic uncertainties

Source of uncertainty	Contribution (%)
Jet energy scale (JES)	+20/-11
b-tagging	± 17
ISR, FSR	± 17
Parton shower and Hadronisation	± 13
Multi-jet trigger	± 10
Generator	± 7
PDF	+7/-4
Pile-up	+5/-7
Background model	± 4
Luminosity	± 4
Jet energy resolution	± 3
Jet reconstruction efficiency	< 1
Total	+36/-34

Dominant systematics JES,b-tagging,ISR,FSR

Kinematic fit and cross-section extraction

- \hookrightarrow Kinematic fit performed to compute the top-quark mass $(m_{t\bar{t}})$ reconstruction of $t\bar{t}$ events;
- ↔ kinematic fit based on a likelihood approach to find the correct association of jets with the final-state partons of the all-hadronic channel;
- $\rightarrow m_t$ used to perform an unbinned likelihood fit and extract the cross-section;
- ↔ measured cross-section compatible with the SM prediction.

$$\sigma_{t\overline{t}} = 168 \pm 12 (\textit{stat.})^{60}_{-57} (\textit{syst.}) \pm 7 (\textit{lumi}) \textit{pb}$$

$t\overline{t}$ differential cross-section in the all-hadronic channel at $\sqrt{s} = 13$ TeV

• ATLAS-CONF-2016-100

Serena Palazzo

September 12, 2017 22 / 27

 $t\bar{t}$ differential cross-section in the all-hadronic channel with $\sqrt{s} = 13\, TeV$

all-hadronic channel : $\sqrt{s} = 13\, TeV \, \mathcal{L} = 14.7\, fb^{-1}$ (Atlas-Conf-2016-100

- \hookrightarrow Boosted all-hadronic $t\overline{t}$ decay mode \Rightarrow only top-quark candidates with high p_T selected;
- \hookrightarrow detailed studies of high- p_T SM processes;
- ${}^{ \hookrightarrow }$ searches of anomalies that could be signals for new physics.

Event selection

Event selection

- \hookrightarrow primary vertex with five or more charged tracks;
- \hookrightarrow no reconstructed e/μ with p_T > 25 GeV;
- \Rightarrow at least 2 large-R jets with $p_T > 350$ GeV and $|\eta| < 2.0 \Rightarrow$ leading jet $p_T > 500$ GeV;

- 9-> \geq 2 small-R jets with p_T > 25 GeV and $|\eta|$ < 2.5;
- ♀ ≥ 2 small-R b-tagged jets ⇒ each associated with just one of the top-tagged large-R jets;

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				
$ \begin{array}{rrrr} t \overline{l} (\text{non all-hadronic}) & 60 & \pm & 15 \\ \ Single top quark & 9 & \pm & 5 \\ \ Multijet events & 300 & \pm & 20 \\ \ Prediction & 1570 & \pm & 260 \\ \ Data (14.7 \text{fb}^{-1}) & 1512 & \cdot & \cdot \end{array} $	tī (all-hadronic)	1190	±	240
Single top quark9 \pm 5Multijet events300 \pm 20Prediction1570 \pm 260Data (14.7 fb ⁻¹)1512512	$t\bar{t}$ (non all-hadronic)	60	±	15
Multijet events 300 ± 20 Prediction 1570 ± 260 Data (14.7 fb ⁻¹) 1512	Single top quark	9	±	5
Prediction 1570 \pm 260 Data (14.7 fb ⁻¹) 1512	Multijet events	300	±	20
Data (14.7 fb ⁻¹) 1512	Prediction	1570	±	260
	Data (14.7 fb ⁻¹)	1512		

$Large \ background \Rightarrow multi-jet$				
events $S_{b\sigma} = \frac{1}{2} \left(\frac{G}{A} + \frac{H}{B} \right) \times C$		0 t	1 t	2 t
	0 b	А	D	G
S: signal region;	1 b	В	Е	Η
G,A,H,B: regions multi-jet	2 b	С	F	S
dominated;				

Fiducial phase-space differential cross-section

 $\mathsf{Variables:} p_{T}^{l,1}, p_{T}^{l,2}, |y^{l,1}|, |y^{l,2}|, p_{T}^{t\bar{t}}, m^{t\bar{t}}, |y^{t\bar{t}}|, |\cos\theta*|, H_{T}^{t\bar{t}}, y_{B}^{t\bar{t}}, \Delta_{\phi}(t_{1}, t_{2}), \chi^{t\bar{t}}, |p_{out}^{t\bar{t}}|$

Hadronic top-quark variables

Dominant uncertainties: Large R-jets, signal modelling, b-tagging

Fiducial phase-space differential cross-section

$t\bar{t}$ system variables

Conclusions

- ↔ Results agree well with latest SM theory predictions;
- ↔ ATLAS is testing the SM at high precision with cross section measurements;
- ↔ shown a small set of the Top-quark ATLAS results;
- full set of top-quark measurements available at: https://twiki.cern.ch/twiki/bin/view/ AtlasPublic/TopPublicResults.

All the measurements will benifit with the incoming data allowing to do more precision measurements.

Thank you for the attention!

BACKUP

$tau + jets \sqrt{s} = 7$ TeV: systematics uncertainties

Source of uncertainty	Relative uncertainty
ISR/FSR	15%
Event generator	11%
Hadronisation model	6%
PDFs	2%
Pile-up	1%
<i>b</i> -jet tagging efficiency	9%
Jet energy scale	5%
$E_{\rm T}^{\rm miss}$ significance mismodelling	5%
<i>b</i> -jet trigger efficiency	3%
Jet energy resolution	2%
Fit systematic uncertainties	4%
Luminosity	4%
	0.107
Total uncertainty	24%

$tau + jets \sqrt{s} = 8$ TeV: number of events yield

Event counts	$ au_{1 ext{-prong}}$	$ au_{3-\mathrm{prong}}$	$ au_{ m had}$
$t\bar{t} \rightarrow e/\mu + jets$	21.8 ± 4.7	6.8 ± 2.5	28.3 ± 5.3
Single top	107 ± 10	33.9 ± 5.8	141 ± 12
W + jets	71.7 ± 8.5	27.1 ± 5.2	99 ± 10
Z + jets	7.2 ± 2.7	1.6 ± 1.3	8.7 ± 3.0
Diboson	1.0 ± 1.0	0.4 ± 0.6	1.5 ± 1.2
Misidentified- τ_{had}	46.6 ± 6.8	24.9 ± 5.0	74.9 ± 8.7
Expected $t\bar{t} \rightarrow \tau + jets$	1084 ± 33	312 ± 18	1398 ± 37
Total Expected	1339 ± 37	407 ± 20	1751 ± 42
Data	1278	395	1678

$tau + jets \sqrt{s} = 8$ TeV: systematic uncertainties

Uncertainty	$ au_{1-\mathrm{prong}}$	$ au_{3-\mathrm{prong}}$	$ au_{ m had}$
Total Systematic	- 11 /+ 11	- 16 /+ 14	- 12/+ 12
Jet energy scale	- 4.0 /+ 4.2	- 8.4 /+ 5.7	- 5.0/+ 4.5
<i>b</i> -tag efficiency	- 4.7 /+ 5.0	- 4.8 /+ 5.0	- 4.7 /+ 5.0
c-mistag efficiency	- 1.6/+ 1.6	- 1.5 /+ 1.5	- 1.6/+ 1.6
Light-jet mistag efficiency	- 0.3 /+ 0.3	- 0.5 /+ 0.5	- 0.4 /+ 0.4
$E_{\mathrm{T}}^{\mathrm{miss}}$	- 0.3 /+ 0.5	- 1.7 /+ 0.5	- 0.6 /+ 0.4
$\tau_{\rm had}$ identification	- 3.5 /+ 3.4	- 6.0 /+ 5.6	- 4.1 /+ 3.9
$ au_{ m had}$ energy scale	- 2.1 /+ 2.0	- 1.2 /+ 1.4	- 1.9 /+ 1.9
Jet vertex fraction	- 0.1 /+ 0.3	- 0.3 /+ 0.3	- 0.2 /+ 0.3
Jet energy resolution	- 1.4 /+ 1.4	- 0.2 /+ 0.2	- 1.1 /+ 1.1
Generator	- 1.5 /+ 1.5	- 2.5 /+ 2.5	- 2.1 /+ 2.1
Parton Shower	- 2.0/+ 2.0	- 2.6 /+ 2.6	- 2.1 /+ 2.1
ISR/FSR	- 6.2/+ 6.2	- 8.5 /+ 8.5	- 6.7 /+ 6.7
Misidentified- τ_{had} background	- 1.3 /+ 1.4	- 2.0 /+ 2.2	- 1.6/+ 1.6
W + jets background	- 2.9 /+ 2.9	- 3.6 /+ 3.6	- 3.0 /+ 3.0
Statistics	- 2.2 /+ 2.2	- 5.6 /+ 5.6	- 1.7 /+ 1.7
Luminosity	- 2.3 /+ 2.3	- 2.3 /+ 2.3	- 2.3 /+ 2.3

τ + lepton \sqrt{s} = 7 TeV: systematic uncertainties

Source	$\mu + \tau$	$e + \tau$
μ (ID/Trigger)	-1.1 /+1.5	_
e (ID/Trigger)	-	±2.9
JES	-2.0/+2.2	-1.9 /+2.8
JER	±1.0	±1.2
ISR/FSR	±4.8	±3.5
Generator	±0.7	±0.7
PDF	±2.0	±2.1
b-tag	-7.7/+9.0	-7.5/+8.9
τ_1 ID	-3.0/+3.2	-2.7/+3.0
$ au_3$ ID	-3.1/+3.4	-2.9/+3.2

τ + lepton \sqrt{s} = 7 TeV: BDT fit

τ + lepton \sqrt{s} = 7 TeV: matrix method

$t\overline{t}$ differential cross-section $\sqrt{s} = 13$ TeV: fiducial phase-space distributions

