# Recent measurements of low-energy hadronic cross sections at BABAR & implications for g-2 of the muon

J. William Gary U. California, Riverside

#### on behalf of the BABAR Collaboration



XLVII International Symposium on Multiparticle Dynamics, Tlaxcala Mexico, September 11-15, 2017

VERSIDE

## Outline

- g 2 of the muon
- BABAR and the initial-state radiation (ISR) method
- Recent exclusive hadronic cross section measurements
  - $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$  arXiv:1709.01171 (05-Sept-2017)
  - $e^+e^- \rightarrow \pi^+\pi^-\eta \qquad \qquad \text{Preliminary}$
  - $e^+e^- \rightarrow K_S K_L \pi^0$ ,  $K_S K_L \eta$ ,  $K_S K_L \pi^0 \pi^0$  PRD 95 (2017) 052001
- Implications for the muon g 2
- Summary

### The muon g-2 discrepancy

- Magnetic moment of a spin ½ particle:  $\vec{\mu} = g \frac{e}{2mc} \vec{s}$
- Dirac equation predicts g = 2 exactly
- Radiative corrections alter the prediction, introducing sensitivity to new physics through loops: g = 2(1 + a)

• The "anomalous" moment: 
$$a = \frac{g-2}{2}$$

- Theory and experiment agree to high precision for the electron anomalous moment
- For the muon, there is a tension on the order of 3.5 standard deviations → the muon g-2 discrepancy



### $g_{\mu}$ - 2 in the standard model

• The longstanding tension between theory and data for the muon g-2 could be an indication of new physics



- The Muon g-2 experiment at Fermilab, with data collection starting in Fall 2017, hopes to reduce the experimental uncertainty by a factor of 4 by around 2019
- Similar goal on a somewhat longer time scale (2022 ??) by the J-PARC E34 experiment
- The limiting factor in the theoretical prediction for g 2 is the uncertainty In the <u>leading-order hadronic term</u>

### LO hadronic contribution to $a_u^{had}$ ,

The most precise prediction for  $a_{\mu}^{had,LO}$  is from low-energy  $\underline{e^+e^-} \rightarrow hadrons$  data and dispersion relations  $a_{\mu}^{had,LO} = \frac{m_{\mu}^2}{12\pi^3} \int_{m_{\pi}^2}^{\infty} \frac{\hat{K}(s)}{s} \sigma_{e^+e^- \rightarrow hadrons}(s) ds$   $\hat{K}(s) = kinematic factor$   $\hat{K}(s) = kinematic factor$   $\frac{\hat{K}(s)}{s} \sim \frac{1}{s} \rightarrow low-energy (< 2 \text{ GeV}) cross sections dominate}$ 

- Use sum of measured exclusive channels:  $2\pi$ ,  $3\pi$ ,  $4\pi$ , KK, KK $\pi$ , KK $\pi\pi$ ,  $\eta\pi$ , ...
- Use isospin relations for missing channels
- Above ~1.8 GeV can start to use pQCD or inclusive  $\sigma(e^+e^- \rightarrow hadrons)$  data
- BABAR has a long-standing program to measure exclusive cross sections below 2 GeV for all possible hadronic final states

### The BABAR experiment at SLAC

- PEP-II rings: asymmetric e<sup>+</sup>e<sup>-</sup> collider @ **SLAC** 9 GeV e<sup>-</sup> and 3.1 GeV e<sup>+</sup>
- Collected data 1999-2008
- Data analysis still active (6 papers submitted so far in 2017)



### The BABAR experiment at SLAC

- Primarily designed for studies of CP violation in B meson decays
- Its general purpose design makes it suitable for a wide variety of other studies



The analyses presented here use ~470 fb<sup>-1</sup> of data collected at  $Vs \approx 10.6$  GeV

### ISR method to measure low energy cross sections

$$e^{-(9\text{GeV})}$$
  
 $\sqrt{s'} = E_{CM}$  hadrons  
 $e^{+(3\text{GeV})}$ 

- Photon emitted by the incoming e<sup>+</sup> or e<sup>-</sup>: initial-state radiation (ISR)
- $\gamma_{ISR}$  is  $\gamma$  with highest  $E_{CM}$  & with  $E_{CM} > 3$  GeV
- High event acceptance, easily recognizable
- Final-state photon radiation rate negligible
- Can access a wide range of energy in a single experiment: from threshold to ~5 GeV; eliminate point-to-point systematic uncertainties



### ISR method to measure low energy cross sections



- Study of the intermediate resonance structure in low-energy <u>e<sup>+</sup>e<sup>-</sup> → hadrons</u> data is also interesting
- Sheds light on the production process of hadrons
- Can be used to test theoretical models
- Knowledge of the resonance structure significantly reduces systematic uncertainties in the acceptance since the acceptance differs for different intermediate states → incorporate information into the MC simulations

(I)  $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ 

arXiv:1709.01171 (submitted to PRD)

- One of the least known cross sections important for a<sup>had,LO</sup>
- The new results supersede preliminary BABAR results from 2007 based on around half the final data set
  - Require exactly 2 charged tracks, an ISR photon candidate,  $\geq$  4 other photons
  - Perform kinematic fit to the  $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\gamma$  hypothesis, constraining two  $2\gamma$  combinations to the  $\pi^0$  mass
  - Select the overall combination of four photons yielding the smallest  $\chi_{4\pi\gamma}^2$ , requiring  $\chi_{4\pi\gamma}^2 < 30$
  - Difference between the  $\chi_{4\pi\gamma}^{2}$  distributions of data and signal MC due to background in the former



(I)  $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ 

arXiv:1709.01171 (submitted to PRD)

Background subtracted using simulation normalized to data or using the data sideband

Largest ISR background:  $\pi^+\pi^-3\pi^0\gamma_{ISR}$ 

- Cross section not well measured; only previous measurement is from 1979
- Perform new measurement using similar techniques to that used for the π<sup>+</sup>π<sup>-</sup>π<sup>0</sup>π<sup>0</sup> cross section
- Obtain reliable background estimate, adjusting the shape and normalization of e<sup>+</sup>e<sup>-</sup> → π<sup>+</sup>π<sup>-</sup>3π<sup>0</sup> in the simulation



(I)  $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ 

arXiv:1709.01171 (submitted to PRD)

Intermediate resonances:

a large fraction of  $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$  comes from  $e^+e^- \rightarrow \omega\pi^0$  with  $\omega \rightarrow \pi^+\pi^-\pi^0$ 



BABAR more precise than previous experiments; cover wider energy range; resolve some discrepancies

(I)  $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ 

#### arXiv:1709.01171 (submitted to PRD)



- BABAR results (150,000 signal events)
  - far more precise
  - cover far wider energy range
- Result for  $a_{\mu}^{\pi+\pi-\pi0\pi0}$  (E<sub>CM</sub> < 1.8 GeV): 179 ± 1(stat) ± 6(syst) x 10<sup>-11</sup> (3.2% precision)
- World average without BABAR: 167 ± 13 (stat+syst) x 10<sup>-11</sup> (7.9% precision)
- The BABAR data reduce uncertainty in  $a_{\mu}^{\pi+\pi-\pi0\pi0}$  by a factor of 2.5

(II)  $e^+e^- \rightarrow \pi^+\pi^-\eta$  with  $\eta \rightarrow \gamma\gamma$ 



- Similar analysis techniques to  $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ ; 8000 signal events
- Complements and improves the precision of the BABAR result from 2007 [PRD 76 (2007) 092005], based on 232 fb<sup>-1</sup> and the  $\eta \rightarrow \pi^+\pi^-\pi^0$  decay mode
- Reaction dominated  $\rho(770)\eta$  intermediate state, but has complex E<sub>CM</sub> structure

### (II) $e^+e^- \rightarrow \pi^+\pi^-\eta$ with $\eta \rightarrow \gamma\gamma$

#### Preliminary







| model | Resonance model                                    | Good fit for              |
|-------|----------------------------------------------------|---------------------------|
| 0     | ρ(770) + ρ(1450)                                   | Doesn't fit               |
| 1     | ρ(770) – ρ(1450)                                   | E <sub>cm</sub> < 1.7 GeV |
| 2     | ρ(770) – ρ(1450) – ρ(1700)                         | E <sub>cm</sub> < 1.9 GeV |
| 3     | ho(770) – $ ho$ (1450) + $ ho$ (1700)              | E <sub>cm</sub> < 1.9 GeV |
| 4     | $\rho(770) - \rho(1450) + \rho(1700) + \rho(2150)$ | E <sub>cm</sub> < 2.2 GeV |

- Coupling constants governing the decays ~real: phase differences are 0 or π only
- Need an additional resonance to describe data above E<sub>cm</sub>= 2.3 GeV

(III)  $e^+e^- \rightarrow K_S K_I \pi^0$ 

Phys. Rev. D 95 (2017) 052001



- 3700 signal events
- First measurement of this process
- First observation of  $J/\psi \rightarrow K_S K_L \pi^0$



- Dominant intermediate state (95%) is K\*(892)K
- K\*(1430)K and  $\phi(\rightarrow K_S K_L)\pi^0$  also seen

(IV)  $e^+e^- \rightarrow K_S K_L \eta$ 

Phys. Rev. D 95 (2017) 052001



- 864 signal events
- First measurement of this process

• Dominated by  $e^+e^- \rightarrow \phi \eta$ 

(V)  $e^+e^- \rightarrow K_S K_L \pi^0 \pi^0$ 

Phys. Rev. D 95 (2017) 052001



hatched areas = nonresonant components

- 392 signal events
- First measurement of this process

• Clear  $e^+e^- \rightarrow K^*(892)K\pi$  signals

(VI)  $e^+e^- \rightarrow K_s K^+\pi^-\pi^0$ 

Phys. Rev. D 95 (2017) 092005

hatched areas = nonresonant components



- 6400 signal events, first measurement of this process
- Large J/ $\psi \rightarrow K_{s}K^{+}\pi^{-}\pi^{0}$  peak (first observation of this decay)
- $K^*(892)K\pi$  and  $K_sK^+\rho(770)^-$  are dominant
- K\*(892)K\*(892) ~ 15%; small K\*(1430)Kπ component



(VII)  $e^+e^- \rightarrow K_S K^+\pi^-\eta$ 

Phys. Rev. D 95 (2017) 092005



- 358 signal events
- First measurement of this process
- Dominated by K\*(892)K $\eta$  peak, primarily in K\*(892)<sup>±</sup>  $\rightarrow$  K<sub>S</sub> $\pi^{\pm}$

### Implications for the muon g - 2

- With the new results for
  - $e^+e^- \rightarrow K_S K_L \pi^0 \qquad \text{PRD95 (2017) 052001}$
  - $e^+e^- \rightarrow K_S K^+\pi^-\pi^0$  PRD95 (2017) 092005
  - $e^+e^- \rightarrow K_S K_L \pi^0 \pi^0 \qquad \text{PRD95 (2017) 052001}$

in combination with previous BABAR results, BABAR has now measured <u>all</u>

- $e^+e^- \rightarrow KK\pi$
- $e^+e^- \rightarrow KK\pi\pi$

cross sections except those with a  $K_{\mbox{\tiny L}}K_{\mbox{\tiny L}}$ 

•  $a_{\mu}^{KK\pi}$  and  $a_{\mu}^{KK\pi\pi}$  can be determined with no assumptions or isospin relations (except assume the  $K_LK_L$  rates to be the same as for  $K_SK_S$ )



From V.P. Druzhinin, EPJ Web of Conferences 142, 01013 (2017)

### Implications for the muon g - 2

- KK $\pi\pi$  states comprise ~25% of the total hadronic cross section at  $E_{CM} \approx 2 \text{ GeV}$
- Can be used, along with the other BABAR measurements at E<sub>CM</sub> ≈ 2 GeV, to test the pQCD prediction for e<sup>+</sup>e<sup>-</sup> → hadrons
- The BABAR results yield ( $E_{CM} < 1.8$  GeV)  $a_{\mu}^{KK\pi\pi} = 8.5 \pm 0.5$  (stat+syst) x 10<sup>-11</sup> (6% precision)
- Previous result, based mostly on isospin relations: 30% precision



From V.P. Druzhinin, EPJ Web of Conferences 142, 01013 (2017)

### Implications for the muon g - 2



### Summary

- Low-energy e<sup>+</sup>e<sup>-</sup> → hadrons cross section data currently provide the most accurate prediction for a<sup>had,LO</sup>
- The  $e^+e^- \rightarrow hadrons$  data also
  - yield important information on hadron dynamics
  - − allow tests of QCD, including for  $\sigma(e^+e^- \rightarrow hadrons)$  at E<sub>CM</sub> ≈ 2 GeV
  - provide first observations of cross sections and of (for example)  $J/\psi$  and  $\psi$ (2S) branching fractions
- New BABAR results reduce the uncertainty in  $a_{\mu}^{had,LO}$ 
  - $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$  from around 7% to around 3%
  - $e^+e^- \rightarrow KK\pi\pi$  from around 30% to around 6%
- Future progress in a<sub>μ</sub><sup>had,LO</sup> will come from reduced systematic uncertainties in e<sup>+</sup>e<sup>-</sup> → π<sup>+</sup>π<sup>-</sup> (BABAR and CMD3) and perhaps eventually lattice QCD



# **EXTRA**

### ISR method to measure low energy cross sections



The measured radiative crosshadronssection is then interpreted in termsof nonradiative cross section

$$\frac{d\sigma_{\gamma f}(s,x)}{dx} = W(s,x)\sigma_f(E_{\text{c.m.}})$$

W (s,x) = radiator function

 probability for the initial e<sup>+</sup> or e<sup>-</sup> to radiate a photon, lowering the annihilation energy from Vs to E<sub>CM</sub> (calculated in QED to better than 0.5% accuracy)

 $E_{CM} = V(1-x)s = invariant mass of the hadronic system$ 

x = 2 
$$E_{\gamma}/Vs$$
;  $E_{\gamma}$  measured in CM frame