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We neglect effects of time-reversal violation, i.e., we consider the above 8 cou-
plings to be real.

In neutron decay experiments the outgoing spins are usually not observed. Sum-
ming over these spin quantities, and neglecting the neutrino masses, one can evaluate
the triple differential decay rate to be:9

d3Γ =
1

(2π)5
G2

F |Vud|2

2
peEe (E0 − Ee)

2 dEedΩedΩν

×ξ
[
1 + a

pe · pν
EeEν

+ b
me

Ee
+ sn

(
A

pe

Ee
+ B

pν
Eν

+ . . .

)]
, (4)

where pe, pν , Ee, and Eν are the electron (neutrino) momenta and total energies,
respectively, E0 is the maximum electron total energy, me the electron mass, sn the
neutron spin, and the Ωi denote solid angles. Quantities a, A, and B are the angular
correlation coefficients, while b is the Fierz interference term. The latter, and the
neutrino-electron correlation a, are measurable in decays of unpolarized neutrons,
while the A and B, the beta and neutrino asymmetry parameters, respectively,
require polarized neutrons. The dependence of a, b, A, and B on the coupling
constants Lj and Rj is described in Ref. 7. We mention that in the presence of LH
S and T couplings B depends on the electron energy: B = B0 + bν

me
Ee

, where bν is
another Fierz-like parameter, similar to b.7,9 We note that a, A, and B0 are sensitive
to non-SM couplings only in second order, while b and bν depend in first order on
LS and LT . A non-zero b would indicate the existence of LH S and T interactions.

Another observable is C, the proton asymmetry relative to the neutron spin.
Observables related to the proton do not appear in Eq. (4). However, the proton is
kinematically coupled to the other decay products. The connection between C and
the coupling constants Lj and Rj is given in Refs. 7 and 10.

We also use the ratio of the Ft0
+→0+

values in superallowed Fermi (SAF) decays
to the equivalent quantity in neutron decay, Ftn:

rFt =
Ft0

+→0+

Ftn
=

Ft0
+→0+

fnt(1 + δ′R)
=

Ft0
+→0+

fR ln (2)τn
, (5)

where fn = 1.6887 is a statistical phase-space factor.1 The nucleus-dependent
(outer) radiative correction δ′R, and O(α2) corrections,11–13 change fn by ∼ 1.5%
to fR = 1.71385(34)a. The corrections implicitly assume the validity of the V −A
theory.15 The dependence of rFt on coupling constants Lj and Rj is given in Ref. 7.

An electrically charged gauge boson outside the SM is generically denoted W ′.
The most attractive candidate for W ′ is the WR gauge boson associated with the
left-right symmetric models,16,17 which seek to provide a spontaneous origin for
parity violation in weak interactions. WL and WR may mix due to spontaneous

aThe most recently published value of fR = 1.71335(15)14 used fn = 1.6886, and did not include
the corrections by Marciano and Sirlin.12 Applying the Towner and Hardy prescription for splitting
the radiative corrections13 increases the uncertainty in fR slightly, to reproduce Eq. (18) in Ref. 12.
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Effective Hamiltonian for  β-decay  

➡ Lorentz low energy constants CS,P,V,A,T 
➡ SM 1param λ=-CA/CV 
➡ a(λ), A (λ), B (λ)

[Lee & Yang, PR104]

➡ sensitivity of neutron beta decay to new physicsb=0 in SM 

B ⊂ bν =0 in SM
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correlation coefficients, while b is the Fierz interference term. The latter, and the
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to non-SM couplings only in second order, while b and bν depend in first order on
LS and LT . A non-zero b would indicate the existence of LH S and T interactions.
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Observables related to the proton do not appear in Eq. (4). However, the proton is
kinematically coupled to the other decay products. The connection between C and
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(outer) radiative correction δ′R, and O(α2) corrections,11–13 change fn by ∼ 1.5%
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An electrically charged gauge boson outside the SM is generically denoted W ′.
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[Lee & Yang, PR104]

➡ sensitivity of neutron beta decay to new physicsb=0 in SM 

B ⊂ bν =0 in SM

BRIEF REPORTS PHYSICAL REVIEW C 88, 048501 (2013)

TABLE I. The statistical weighting and ratio of the phase-space factors is presented for each of the 13 isotopes used in the 0+ → 0+

superallowed data set to calculate the average F t value. Ik(x̃0) are the statistical rate functions defined in Eq. (4) and calculated by Towner and
Hardy [10,11].

Isotope F t I0(x̃0) I1(x̃0) I1(x̃0)/I0(x̃0)

10C 3067.7(4.6) 2.3004(12) 1.42401(74) 0.6190(5)
14O 3071.5(3.3) 42.772(23) 18.743(10) 0.4382(3)
22Mg 3078.0(7.4) 418.39(17) 128.948(52) 0.3082(2)
34Ar 3069.6(8.5) 3414.5(1.5) 724.56(32) 0.2122(1)
26Alm 3072.4(1.4) 478.237(38) 143.662(11) 0.3004(1)
34Cl 3070.6(2.1) 1995.96(47) 466.26(11) 0.2336(1)
38Km 3072.5(2.4) 3297.88(34) 701.459(69) 0.2127(1)
42Sc 3072.4(2.7) 4472.24(1.15) 895.34(23) 0.2002(1)
46V 3073.3(2.7) 7209.47(90) 1317.17(16) 0.1827(1)
50Mn 3070.9(2.8) 10745.97(57) 1816.07(10) 0.1690(1)
54Co 3069.9(3.3) 15766.6(2.9) 2470.63(45) 0.1567(1)
62Ga 3071.5(7.2) 26400.2(8.3) 3719.7(1.2) 0.1409(1)
74Rb 3078.0(13.0) 47300.0(110) 5884.1(1.4) 0.1244(4)
Average 3072.08(79) 0.2579(1)

term is zero G̃2
V = G2

V,

1
τ0+

=
G̃2

V

2π3h̄
(1 + 3λ2)fn(1 + $RC). (5)

A nonzero Fierz term will alter the neutron decay rate τn

via a ⟨me/E⟩ term in the phase-space integral and modify the
value of GV extracted from superallowed Fermi decays to

G̃2
V = G2

V⟨1 + bFγ I1(x̃0)/I0(x̃0)⟩, (6)

where γ =
√

1 − (Zα)2, Z is the atomic number, α is the
fine structure constant, and x̃0 is the end-point energy for
the superallowed Fermi decay isotopes, and I1(x̃0)/I0(x̃0)
corresponds to the ratio of phase-space integrals over the
superallowed decay used in the determination of Vud and
bF = 2 Re(CS/CV) [10]. For the moment we will ignore the
changes in λ induced by b; this will be addressed in detail
after presenting an outline of our approach. In Table I, the 13
isotopes included in the determination of the average F t are
listed with the absolute uncertainty on the measurement and
the statistical rate function and the ratio I1(x̃0)/I0(x̃0) [10]. The
reported values include both recoil and Coulomb corrections.
Writing Eqs. (2) and (5) in terms of GV, bF and b, we have

1
τn

= G2
V

2π3h̄
(1 + 3λ2)fn(1 + $RC)(1 + κb), (7)

and

1
τ0+

=
G2

V

2π3h̄
(1 + 3λ2)fn(1 + $RC)(1 + ζbF), (8)

where κ = I1(x0)/I0(x0), κ̃ = I1(x̃0)/I0(x̃0), and ζ = ⟨γ κ̃⟩ ∼
0.2560. In Eq. (7), the term (1 + κb) arises from the neutron
phase-space integral when b ̸= 0, and the (1 + ζbF) term in
Eq. (8) is from substitution of measured GV using Eq. (6).
Taking the difference between the measured neutron decay
rate and the decay rate predicted from 0+ → 0+ decays in

terms of measured quantities gives

τnK(1 + 3λ2) = 1 + ζbF

1 + κb
, (9)

where all the constants have been combined into K =
G̃2

Vfn(1 + $RC)/(2π3h̄) = 1.934(2) × 10−4 s−1, we express
Eq. (9). Critically, leading order differences in the predicted
versus measured decay rates must come from scalar and
tensor-induced couplings in the Fierz term, and any new
physics which adjusts the value of GV and λ affects both rates
uniformly (such as right-handed currents). Additionally, the
impact of the scalar coupling determined in the superallowed
decays is suppressed by ζ because of the much higher
end-point energy of these decays relative to neutron β decay.

Under the assumptions of this analysis the Fierz inference
term can be approximated in terms of the scalar CS/CV and
tensor CT/CA couplings [1]:

b = 2
√

1 − α2

1 + 3λ2

[
Re

(
CS

CV

)
+ 3λ2Re

(
CT

CA

)]
. (10)

At this point, we already have a reasonably strong constraint
on new physics by using Eqs. (9) and (10), and the definition
of bF,

CT

CA
(6λ2γn) = δb

τnKκ
− 2γn

CS

CV
− (1 + 3λ2)κ−1 (11)

where δb = ⟨1 + 2γ (CS/CV)κ̃⟩ and γn =
√

1 − α2. Using
the PDG values for λ = −1.2701(25), τn = 880.1(1.1) s,
and Vud = 0.97425(40) [12] and limits on scalar couplings,
CS/CV = 0.0011(13), from the superallowed data set [10],
one can place a limit on the tensor coupling. This results in
2-σ (95% C.L.) limits of −0.0009 < CT/CA < 0.0125. Note
that if only the Perkeo II result for λ = −1.2739(19) [13] is
used, then limits shift to −0.0012 < CT/CA < 0.0065.

b dependence of λ. The limits obtained from Eq. (11)
have ignored the fact that λ is determined experimentally
by measuring correlation coefficients, which typically are

048501-2

➡ b sensitive to scalar and tensor LEC

➡ same for bν



NEW PHYSICS IN  δ

λ→pretty well known

SCALAR & TENSOR INTERACTIONS

from various processes 
decay rate for super allowed 0+→0+  

decay rate for beta decay   (total, angular correlation in unpolarized & polarized parts)    

radiative pion decay

V. GUDKOV, G. L. GREENE, AND J. R. CALARCO PHYSICAL REVIEW C 73, 035501 (2006)

the constants Ci can be chosen to be real. (The violation
of time-reversal invariance in neutron decay at the level of
considered accuracy would be a clear manifestation of new
physics and thus does not require an analysis of the form
contained here.) Ignoring electron and proton polarizations,
the given effective Hamiltonian will result in the neutron
β-decay rate [12] in the tree approximation (neglecting recoil
corrections and radiative corrections) in terms of the angular
correlations coefficients a,A, and B:

d"3

dEed#ed#ν

= %(Ee)G2
F |Vud |2(1 + 3λ2)

(
1 + b

me

Ee

+ a
p⃗e · p⃗ν

EeEν

+ A
σ⃗ · p⃗e

Ee

+ B
σ⃗ · p⃗ν

Eν

)
. (2)

Here, σ⃗ is the neutron spin, me is the electron mass, Ee,Eν, p⃗e,
and p⃗ν are the energies and momenta of the electron and
antineutrino, respectively, and GF is the Fermi constant of
the weak interaction (obtained from the µ-decay rate). The
function %(Ee) includes normalization constants, phase-space
factors, and standard Coulomb corrections. For the standard
model the angular coefficients depend only on one parameter,
λ = −CA/CV > 0, the ratio of axial-vector to vector nucleon
coupling constant (CV = C ′

V and CA = C ′
A):

a = 1 − λ2

1 + 3λ2
, A = −2

λ2 − λ

1 + 3λ2
, B = 2

λ2 + λ

1 + 3λ2
. (3)

(The parameter b is equal to zero for vectoraxial-vector weak
interactions.)

As was shown in Ref. [1] the existence of additional interac-
tions modifies the above expressions and can lead to a nonzero
value for the coefficient b. To explicitly see the influence
of a nonstandard interaction on the angular coefficients and
on the decay rate of neutron one can rewrite the coupling
constants Ci as a sum of a contribution from the standard
model CSM

i and a possible contribution from new physics δCi :

CV = CSM
V + δCV

C ′
V = CSM

V + δC ′
V

CA = CSM
A + δCA

C ′
A = CSM

A + δC ′
A (4)

CS = δCS

C ′
S = δC ′

S

CT = δCT

C ′
T = δC ′

T .

We neglect the pseudoscalar coupling constants because
we treat Ref. [12] nucleons nonrelativistically. Defining the
term proportional to the total decay rate in Eq. (2) as ξ =
(1 + 3λ2) one can obtain corrections to parameters ξ, a, b,A,
and B because of new physics as δξ, δa, δb, δA, and δB,
correspondingly. Then, using results of Ref. [1],

δξ = CSM
V (δCV + δC ′

V ) +
(
δC2

V + δC ′2
V

+ δCS
2 + δC ′2

S

)/
2 + 3

[
CSM

A (δCA + δC ′
A)

+
(
δC2

A + δC ′2
A + δC2

T + δC ′2
T

)/
2
]
,

ξδb =
√

1 − α2
[
CSM

V (δCS + δC ′
S) + δCSδCV + δC ′

SδC
′
V

+ 3
(
CSM

A (δCT + δC ′
T ) + δCT δCA + δC ′

T δC ′
A

)]
,

ξδa = CSM
V (δCV + δC ′

V ) +
(
δC2

V + δC ′2
V

− δC2
S − δC ′2

S

)/
2 − CSM

A (δCA + δC ′
A)

−
(
δC2

A + δC ′2
A − δC2

T − δC ′2
T

)/
2,

ξδA = −2CSM
A (δCA + δC ′

A) + δC ′
AδC ′

A − δC ′
T δC ′

T

−
[
CSM

V (δCA + δC ′
A) + CSM

A (δCV + δC ′
V )

+ δCV δC ′
A + δC ′

V δCA − δCSδC
′
T − δC ′

SδCT

]
,

ξδB = m
√

1 − α2

Ee

[
2CSM

A (δCT + δC ′
T ) + CSM

A (δCS + δC ′
S)

+CSM
V (δCT + C ′

T ) + 2δCT δC ′
A + 2δCAδC ′

T

+ δCSδC
′
A + δCAδC ′

S + δCV δC ′
T + δCT δC ′

V

]

+ 2CSM
A (δCA + δC ′

A) − CSM
V (δCA + δC ′

A)

−CSM
A (δCV + δC ′

V ) − δCSδC
′
T − δCT δC ′

S

− δCV δC ′
A − δCAδC ′

V . (5)

It should be noted that we have neglected radiative
corrections and recoil effects for the new physics contributions,
because these are expected to be very small. However,
Coulomb corrections for the new physics contributions are
taken into account because they are important for a low-energy
part of the electron spectrum.

From the above equations one can see that contributions
from possible new physics to the neutron decay distribution
function is rather complicated. To be able to separate new
physics from different corrections Eq. (2), obtained in the tree
level of approximation, one must describe the neutron decay
process with accuracy that is better than the expected experi-
mental accuracy. Assuming that the accuracy in future neutron
decay experiments can reach a level of about 10−3–10−4, we
wish to describe the neutron decay with theoretical accuracy
by about 10−5 and our description must include all recoil
and radiative corrections [13–21]. To do this we will use
recent results of calculations [9] of radiative corrections for
neutron decay in the effective field theory (EFT) with some
necessary modifications. The results of Ref. [9] can be used
because they take into account both recoil and radiative
corrections in the same framework of the EFT with estimated
theoretical accuracy that is better than 10−5. However, the
EFT approach does not provide all parameters but rather gives
a parametrization in terms of a few (two, in the case of neutron
decay) low-energy constants that must be extracted from
independent experiments. Therefore, the neutron β-decay
distribution function is parameterized in terms of one unknown
parameter (the second parameter is effectively absorbed in
the axial vector coupling constant). If this parameter would
be extracted from an independent experiment, it gives a
model-independent description of neutron β decay in the
standard model with accuracy better than 10−5. A rough
estimate of this parameter based on a “natural” size of
strong interaction contribution to radiative corrections gives
an accuracy for the expressions for the rate and the angular
correlation coefficients that is better than 10−3 (see Ref. [9]).

035501-2

Extract LEC 

CSM
V = gV

CSM
A = �gA

Best constraints so far 

�0.0026 < CT/CA < 0.0024

[Pattie et al., PRC88]

[Hardy et al., PRC91]

@1σ

@95%CL

CS/CV = 0.0014(13)



Low energy

NEW FUNDAMENTAL INTERACTIONS 

Effective field theories for low energy 
➡ New (heavy) dof integrated out  

Consider all  Dirac bilinears for EW interactions 
➡ 1,   γ5,   γμ(1+γ5),   σμν 

➡ Define ``Wilson coefficient" for new interaction

High energy

New particles produced directlyNew particles hints 

• in loops

• mediators of interaction

• ...



EFT AT THE QUARK LEVEL

[Bhattarchaya et al., PRD85]

[Cirigliano et al., NPB 830]BETA DECAY IN EFT

SM

4-fermion interaction
L(eff) = LSM +

X

i

1

⇤2
i

Oi

dj ! uil
�⌫̄l u

d

u

d

V. Cirigliano et al. / Nuclear Physics B 830 (2010) 95–115 101

order in v2/Λ2, we do not need to consider diagrams contributing to µ → eν̄ανβ with the “wrong
neutrino flavor”, because they would correct the muon decay rate to O(v4/Λ4). After integrating
out the W and Z, the muon decay effective lagrangian reads:

Lµ→eν̄eνµ = −g2

2m2
W

[
(1 + ṽL) · ēLγµνeLν̄µLγ µµL + s̃R · ēRνeLν̄µLµR

]
+ h.c., (31)

where m2
W = 1/2g2v2 is the uncorrected W mass and

ṽL = 2
[
α̂

(3)
ϕl

]
11+22∗ −

[
α̂

(1)
ll

]
1221 − 2

[
α̂

(3)
ll

]
1122− 1

2 (1221)
, (32)

s̃R = +2[α̂le]2112, (33)

represent the correction to the standard (V −A)⊗ (V −A) structure and the coupling associated
with the new (S − P) ⊗ (S + P) structure, respectively.

3.4. Effective lagrangian for beta decays: dj → uiℓ
−ν̄ℓ

The low-energy effective lagrangian for semileptonic transitions receives contributions from
both W exchange diagrams (with modified W -fermion couplings) and the four-fermion operators
O

(3)
lq , Oqde , Olq , Ot

lq . As in the muon case, we neglect lepton flavor violating contributions
(wrong neutrino flavor). The resulting low-energy effective lagrangian governing semileptonic
transitions dj → uiℓ

−ν̄ℓ (for a given lepton flavor ℓ) reads:

Ldj →uiℓ−ν̄ℓ
= −g2

2m2
W

Vij

[(
1 + [vL]ℓℓij

)
ℓ̄LγµνℓLūi

Lγ µd
j
L + [vR]ℓℓij ℓ̄LγµνℓLūi

Rγ µd
j
R

+ [sL]ℓℓij ℓ̄RνℓLūi
Rd

j
L + [sR]ℓℓij ℓ̄RνℓLūi

Ld
j
R

+ [tL]ℓℓij ℓ̄RσµννℓLūi
Rσµνd

j
L

]
+ h.c., (34)

where

Vij · [vL]ℓℓij = 2Vij

[
α̂

(3)
ϕl

]
ℓℓ

+ 2Vim

[
α̂(3)

ϕq

]∗
jm

− 2Vim

[
α̂

(3)
lq

]
ℓℓmj

, (35)

Vij · [vR]ℓℓij = −[α̂ϕϕ]ij , (36)

Vij · [sL]ℓℓij = −[α̂lq ]∗ℓℓji , (37)

Vij · [sR]ℓℓij = −Vim[α̂qde]∗ℓℓjm, (38)

Vij · [tL]ℓℓij = −
[
α̂t

lq

]∗
ℓℓji

. (39)

In Eqs. (35)–(39) the repeated indices i, j,ℓ are not summed over, while the index m is.

4. Flavor structure of the effective couplings

So far we have presented our results for the effective lagrangian keeping generic flavor struc-
tures in the couplings [α̂X]abcd (see Eqs. (32), (33), and (35) through (39)). However, some of the
operators considered in the analysis contribute to flavor changing neutral current (FCNC) pro-
cesses, so that their flavor structure cannot be generic if the effective scale is around Λ ∼ TeV:
the off-diagonal coefficients are experimentally constrained to be very small. While it is certainly
possible that some operators (weakly constrained by FCNC) have generic structures, we would

Scalars 
εS≣sL+sRTensor 

εT≣tL

right



STANDARD MODEL

LEC IN TERMS OF HADRONIC × NEW INT.

CSM =
GFp
2
Vud (gV � gA)

CS =
GFp
2
Vud gS✏S

CT =
GFp
2
Vud 4 gT ✏T

‟ ”
h
d

��! u e�(pe)⌫̄e(p⌫)
i
⇥ [hP |ū� d|Ni]

NEW  BSM S & T 
INTERACTIONS}

[Bhattarchaya et al., PRD85]


[Cirigliano et al., NPB 830]

New LEC factorized into hadronic contribution & new EW interaction
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Notice that ✏
T

has a renormalization scale and scheme dependence that must be cancelled by the corresponding
form factor g

T

.
where The ✏

T

coe�cient carries a / v2/⇤2 dependence9 on the new-physics scale ⇤ and in the SM they vanish
leaving the well-known (V � A) ⇥ (V � A) structure generated by the exchange of a W boson. Such exotic tensor
interaction can be generated for example by the tree-level exchange of a scalar leptoquark.

Precise measurements in beta decay set strong bounds on the combination g
T

✏
T

, namely [69, 70]

|g
T

✏
T

| < 6 · 10�4 (90% C.L.) , (41)

which is expected to be improved by the next generation of experiments. In particular, a measurement of the Fierz
term b in neutron beta decay at the per-mil level, would improve this bound by a factor of 3.

In order to extract a bound on the Wilson coe�cient ✏
T

from Eq. (41) it is necessary to know the value of the
tensor charge g

T

. Such a bound on ✏
T

can be translated into bounds on masses and couplings in any specific new
physics setup.

It is clear that a large error in the tensor charge will dilute the strong bound given in Eq. (41), which in fact
vanishes completely if the tensor charge is zero. In other words, the sensitivity of beta decay measurements to exotic
tensor interactions depends on our knowledge of the tensor charge. This issue was studied in Ref. [] where it was
shown that a precision of 10-15% in g

T

was necessary to fully exploit a future determination of the Fierz term b at
the per-mil level. Let us do a similar analysis here to understand the impact of the phenomenological determinations
of g

T

explained in the previous sections.
Since the theoretical error is the dominating one in both lattice and phenomenological determinations, one cannot

assume a gaussian distribution of the error around the central value. In order to deal with this situation we follow
Ref. [2] and we calculate the confidence interval on ✏

T

using the so-called R-Fit method [71]. In this scheme the
theoretical likelihoods do not contribute to the �2 of the fit and the corresponding QCD parameters take values
within certain “allowed ranges”. In our case, this means that g

T

is restricted to remain inside a given interval, e.g.
0.16  g

T

 1.20 for the current determination from di-hadron SIDIS (Section ??) TO BE UPDATED. Notice that
all values inside this range are treated on an equal footing, whereas values outside the interval are not permitted
irrespective of how close they are from the edges of the allowed range. The chi-squared function is then given by

�2(✏
T

) = min
g

T

✓
[g

T

✏
T

]exp � g
T

✏
T

� [g
T

✏
T

]exp

◆
2

, (42)

where the minimization is performed varying g
T

within its allowed range. A careful look at this function reveals that
the bound on ✏

T

depends only on the lower limit of the tensor charge, as long as the experimental determination of
g
T

✏
T

is compatible with zero at 1�.
In this way we obtain the limits on the Wilson coe�cient ✏

T

that are shown in Fig. 6, using di↵erent values of the
tensor charge. Let us remind for comparison that the bound obtained from the analysis of LHC data carried out in
Ref. [72] is |✏

T

| < 0.0013.

V. CONCLUSIONS

The possibility of obtaining the scalar and tensor charges directly from experiment with su�cient precision, gives
an entirely di↵erent leverage to neutron beta decay searches.

Due to its non-perturbative nature, the nucleon structure can only be unveiled using complementary methods such
as e↵ecive field theories, lattice calculations, models for the nucleon structure, Schwinger-Dyson based techniques

9 v denotes the electroweak symmetry breaking scale, v = (
p
2GF )�1/2 ' 246 GeV.

|gS✏S | = 0.0014± 0.0013

@95%CL

@1σ

Precision with which the NEW COUPLINGS can be measured depend on 
the knowledge of hadronic charges



Isovector  vector FF

Isovector tensor FF

hP (pp, Sp)|ū�µd|N(pn, Sn)i = gV (t) ūP �µuN +O(
p
t/M)

hP (pp, Sp)|ū�µ⌫d|N(pn, Sn)i = gT
�
t, Q2

�
ūP�µ⌫uN

FORM FACTORS

t=(pn-pp)2


Q2 RGE scale

MATCHING AT HADRONIC LEVEL

NeutronProton

hP (pp, Sp)|ū�d|N(pn, Sn)i

⇓

When t→0, g(0)≡charge Exist in hadronic physics



Fundamental charges for  γμ & γμγ5  only  

HADRONIC STRUCTURE

Nonlocal matrix element for proton structure 

Parton Distribution Functions 
- built from Lorentz symmetry from vectors at hand 

- defined in Bjorken scaling 
- nonperturbative objects 
- 1st principle related to ``charges"

Structural charges for  the others

Scalar & tensor charge 
accessible through sum rules of Parton Distributions



PDF AT LEADING TWIST

Lorentz structure 
Discrete symmetries 
Vectors at hand... 

To leading twist: 

PDFs ⇒ f

q
1 (x) , g

q
1(x) , h

q
1(x)

- -

Vector TensorDirac operator ⇒ Axial-vector

Kinematics of the Bjorken scaling 
Q2→∞ 

p.q→∞ 
Q2/2p.q≡x=finite

Charges ⇒ gV,                 gA,                               gT

Z 1

�1
dxh

uV �dV
1 (x) = gT



DEFINITION 
AND 

FACTORIZATION

ACCESS TO DISTRIBUTION FUNCTIONS

di-π, ...

Semi-inclusive processes

π, ...

Inclusive processes

π, ...

Exclusive processes

σ→ PDF×dσ σ→ PDF×dσ×Fragmentation Function

σ→ |Generalized PDF×H× Meson Amplitude|2
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Fig. 4: Deuteron and proton asymmetries, integrated over the angle q , as a function of x, z and Mhh, for
the data taken with the 6LiD (top) and NH3 target (bottom), respectively. The open data points in both
asymmetry distributions vs. Mhh include all hadron pairs with an invariant mass of Mhh � 1.5 GeV/c2.
These pairs are discarded for the two other distributions, which are integrated over Mhh. The grey bands
indicate the systematic uncertainties, where the last bin in Mhh is not fully shown. The curves show the
comparison of the extracted asymmetries to predictions [37, 38] made using the transversity functions
extracted in Ref. [15] (solid lines) or a pQCD based counting rule analysis (dotted lines).1

5 Discussion of Results

The resulting asymmetries are shown in Fig. 4 as a function of x, z and Mhh for the 6LiD (top) and NH3
(bottom) targets, respectively. For 6LiD, no significant asymmetry is observed in any variable. For NH3,
large negative asymmetries are observed in the region x > 0.03, which implies that both transversity
distributions and polarised two-hadron interference fragmentation functions do not vanish. For x < 0.03,
the asymmetries are compatible with zero. Over the measured range of the invariant mass Mhh and z, the
asymmetry is negative and shows no strong dependence on these variables.
When comparing the results on the NH3 target to the published HERMES results on a transversely po-
larised proton target [28], the larger kinematic region in x and Mhh is evident. However, both results can-
not be directly compared for several reasons: (1) The opposite sign is due to the fact that in the extraction
of the asymmetries the phase p in the angle fRS is used in the COMPASS analysis; (2) COMPASS calcu-
lates asymmetries in the photon-nucleon system, while HERMES published them in the lepton-nucleon
system; both agree reasonably well when including Dnn corrections for HERMES; (3) HERMES uses
identified p

+
p

� pairs and COMPASS h+h� pairs; (4) COMPASS applies a minimum cut on z, removing
a possible dilution due to contributions from target fragmentation.
A naive interpretation of our data, based on Eq. (7) and on isospin symmetry and charge conjugation,
yields D1,u = D1,d and H^

1,u =�H^
1,d [27]. When considering only valence quarks, the asymmetry AsinfRS

UT,d

is proportional to [hu
1 +hd

1 ]H
^
1,u for the deuteron target, while for the proton target AsinfRS

UT,p µ [4hu
1 �hd

1 ]H
^
1,u.

Therefore, like in the case of the Collins asymmetry, the small asymmetries observed for the deuteron

2007 Proton Data 

2002-4 Deuteron Data 

(z, Mh)-dpdence determined  
by DiFF from Belle 

[A.C., Bacchetta, Radici, Bianconi, Phys.Rev. D85]

x-dependence only from 
Transversity 

[A.C., et al, PRL 2012, JHEP 2013, 2015]

TRIPTIC OF TARGET SPIN ASYMMETRY 
SIDIS PRODUCTION OF PION PAIRS @ COMPASS & HERMES                  

EXAMPLE OF DATA & EXTRACTION



TRANSVERSITY PDF

Semi-inclusive processes  

eN→e π X               Torino et 
al 

eN→e (ππ) X          Pavia et al 

Exclusive: eP→e π0 P           GGL

[Goldstein et al, PRD 2015]
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Figure 8. The up (left) and down (right) valence transversities as functions of x at Q2
= 2.4

GeV2. The darker band with solid borders in the foreground is our result in the flexible scenario
with ↵s(M2

Z) = 0.125. The lighter band with dot-dashed borders in the background is the most
recent transversity extraction from the Collins effect [2]. The central thick dashed line is the result
of Ref. [5]. The thick solid lines indicate the Soffer bound.

displayed as a function of x at Q2
= 2.4 GeV2. The darker band with solid borders in the

foreground is our result in the flexible scenario with ↵s(M2
Z) = 0.125. The lighter band

with dot-dashed borders in the background is the most recent transversity extraction of
Ref. [2] using the Collins effect but applying the standard DGLAP evolution equations only
to the collinear part of the fitting function. The central thick dashed line is the result of
Ref. [5], where evolution equations have been computed in the TMD framework.

In the right panel, the disagreement between our result for xhdv
1 (x) at x � 0.1 and

the outcome of the Collins effect is confirmed with respect to our previous analysis (see
Fig. 4 in Ref. [16]). This is due to the fact that the COMPASS data for AD

SIDIS off deuteron
targets remain the same. This trend is confirmed also in the other scenarios, indicating
that it is not an artifact of the chosen functional form. As a matter of fact, our replicas for
the valence down transversity tend to saturate the lower limit of the Soffer bound because
they are driven by the COMPASS deuteron data, in particular by the bins number 7 and
8. It is worth mentioning that some of the replicas outside the 68% band do not follow
this trend. Their trajectories are spread over the whole available space between the upper
and lower limits of the Soffer bound, still maintaining a good �2/d.o.f. (typically, around
2). It is also interesting to remark that the dashed line from Ref. [5], although in general
agreement with the other extraction based on the Collins effect, also tends to saturate the
Soffer bound at x > 0.2.

Apart from the range x � 0.1, there is a general consistency among the various extrac-
tions which is confirmed also for the valence up transversity (left panel), at least for the
range 0.0065  x  0.29 where there are data. This is encouraging: while the dihadron
SIDIS data are a subset of the single-hadron ones, the theoretical frameworks used to in-
terpret them are very different. Nevertheless, we point out that the collinear framework, in
which our results are produced, represents a well established and robust theoretical context.
On the contrary, the implementation of the QCD evolution equations of TMDs needed in
the study of the Collins effect still contains elements of arbitrariness (see Refs. [3–5] and ref-
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1σ error band from replicas @2.4 GeV2 PAVIA

Torino 2013 @2.4 GeV2 

Kang et al central value

[Radici et al., JHEP 2015]
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Figure 27: The projected statistical error for data on a hydrogen target (100 days of
HD-Ice) for the target asymmetry Asin φR sin θ

UT in (z, Mππ, x). The band represent the
spread in predictions for three different models for h1(x) from Fig. 6.

compared to nuclear targets (NH3, ND3) is its superior dilution factor, which is crucial
for studies of transverse momentum dependences.

Analysis of already existing electroproduction data from CLAS with unpolarized
and longitudinally polarized targets has shown that JLab 6 GeV data are consistent
with the PYTHIA MC and proposed measurements are feasible.

Beam Request

We ask the PAC to award 110 days of beam time for a dedicated high
statistics SIDIS experiment with a transversely polarized target.

The measurement of the target SSA in hadron pair production off a transversely
polarized proton would allow precision measurements of flavor contribution of the
underlying transversity PDF.
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extraction of the Collins function from e+e� annihilation data [2]. The three black squares
(labels 3-5) correspond to the results of our previous analysis [16] for the rigid, flexible, and
extraflexible scenarios, from left to right respectively. The three rightmost triangles (labels
6-8) indicate the outcome of the present work with ↵s(M2

Z) = 0.125 in the same order.
Consistently with Fig. 7, our new results for the up quark are smaller than the previous
ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
lattice QCD.

In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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Figure 11. Isovector tensor charge �uv � �dv at Q2
= 4 GeV2. From left to right: light square

(label 1) is our result for the flexible scenario with ↵s(M2
Z) = 0.125; black square for the lattice

result of Ref. [46] (RQCD); black triangle from Ref. [47] (RBC-UKQCD); black circle from Ref. [48]
(LHPC); black inverted triangle from Ref. [49] (PNDME); black diamond and star from Ref. [50]
(ETMC) with 2+1 and 2+1+1 flavors, respectively.

�qqv of Eq. (4.3) at Q2
= 10 GeV2 for valence up and down quarks in the rigid, flexi-

ble, extraflexible scenarios for the fitting function of Eq. (4.2) with ↵s(M2
Z) = 0.125 or

↵s(M2
Z) = 0.139 in the evolution code. In the lower part of the table, we show the results

for the same cases but for the tensor charge �qv of Eq. (4.4) at the starting scale Q2
0 = 1

GeV2. All indicated errors are calculated at 68% confidence level.

5 Conclusions

The transversity parton distribution function is an essential piece of information on the
nucleon at leading twist. Its first Mellin moment is related to the nucleon tensor charge.
Due to its chiral-odd nature, transversity cannot be accessed in fully inclusive deep-inelastic
scattering (DIS). Within the framework of collinear factorization, it is however possible
to access it in two-particle-inclusive DIS in combination with Dihadron Fragmentation
Functions (DiFFs). The latter can be extracted from e+e� annihilations producing two

– 19 –

WITH MONTE CARLO 
LIKE FITTING

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
2
0
5
P
_
0
3
1
5
 
v
1

extraction of the Collins function from e+e� annihilation data [2]. The three black squares
(labels 3-5) correspond to the results of our previous analysis [16] for the rigid, flexible, and
extraflexible scenarios, from left to right respectively. The three rightmost triangles (labels
6-8) indicate the outcome of the present work with ↵s(M2

Z) = 0.125 in the same order.
Consistently with Fig. 7, our new results for the up quark are smaller than the previous
ones. They also appear globally in better agreement with the values from Ref. [2] (and
not far from the ones obtained from the parametrization of chiral-odd Generalized Parton
Distributions of Ref. [37]), although the large uncertainties introduced by the numerical
extrapolation smooth most of the differences. This is particularly evident for the down
quark, where in addition the numerical values are very close because the experimental data
for AD

SIDIS are the same as before.
In Fig. 11, we show the isovector nucleon tensor charge gT = �uv��dv. While there is no

elementary tensor current at tree level in the Standard Model, the nucleon matrix element
of the tensor operator can still be defined (for a review, see Ref. [38] and references therein).
The gT belongs to the group of isovector nucleon charges that are related to flavour-changing
processes. A determination of these couplings may shed light on the search of new physics
mechanisms that may depend on them [39–42], or on direct dark matter searches [43]. The
vector charge gV , axial charge gA, and induced tensor charge g̃T , are fixed by baryon number
conservation, neutron �-decay, and nucleon magnetic moments, respectively [44]. Also the
pseudoscalar charge gP is, to some extext, constrained by low-energy n⇡+ scattering [45].
The other isovector nucleon couplings, including gT , have been determined so far only with
lattice QCD.

In Fig. 11, the leftmost light square with label 1 is our new result for gT = 0.81± 0.44

at Q2
= 4 GeV2 for the flexible scenario with ↵s(M2

Z) = 0.125 at 68% confidence level.
We compare it with various lattice computations. From left to right, the black square
refers to the lattice simulation of RQCD at m⇡ ⇡ 150 MeV with nf = 2 NPI Wilson-
clover fermions [46], the black triangle to that of RBC-UKQCD at m⇡ = 330 MeV with
nf = 2 + 1 domain wall fermions [47], the black circle to that of LHPC at m⇡ ⇡ 149

MeV with nf = 2+1 HEX-smeared Wilson-clover fermions [48], the black inverted triangle
to that of PNDME at m⇡ = 220 MeV with Wilson-clover fermions on a HISQ staggered
nf = 2 + 1 + 1 sea [49], the black diamond and star to that of ETMC at physical m⇡

with nf = 2 twisted mass fermions and at m⇡ = 213 MeV with nf = 2 + 1 + 1 twisted
mass fermions, respectively [50]. Our result is obviously compatible with the various lattice
simulations because of the very large error. As already remarked, this originates from the
fact that the integral in Eq. (4.4) involves the extrapolation of transversity outside the x

range of experimental data. From Fig. 7 it is evident that the replicas tend to take all
values within the Soffer bounds for x � 0.3 where there are no data, thus increasing the
uncertainty. Moreover, we stress again that there is also a source of systematic error related
to the power x1/2 in the fitting form of Eq. (4.2). The absence of data at very low x leaves
this choice basically unconstrained, whereas the value of the integral in Eq. (4.4) heavily
depends on it.

Finally, in Tab. 3 we collect all numerical values that we have obtained for the (trun-
cated) tensor charge. In the upper part of the table, we show the truncated tensor charge
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FIG. 4: (Color online) The asymmetry A
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)
UT , Eq. (35), plotted vs. �t, at xBj = 0.2, Q2 = 1.5 GeV2 for the �

⇤

p ! ⇡

0
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0

reaction. The error band was obtained by varying the value of the u-quark tensor charge, �u, by ±0.08. The dot-dashed curve
corresponds to �u = 1.4, and the dashed curve corresponds to �u = 0.6. The value of �d was kept fixed at �0.12. The graph
shows the sensitivity of the asymmetry to variations of the tensor charge, or the precision that is needed in measurements of
this quantity in order to reduce the size of the errors.

Another important aspect of this type of measurements is in the t dependence, i.e. we can extract t dependent
tensor form form factora, �

q

(t), (q = u, d). As pointed out in Ref.[] the x and t dependences are correlated through the
measurable integral forms (Eq.(38). Future more extensive and accurate measurements of the t dependence of DVMP
will therefore provide an additional constraint on the values of the tensor charge. The values of the tensor charge that
we report here were obtained by a model dependent analysis of both Deeply Virtual Compton Scattering (DVCS)
data for the chiral even sector, and DVMP data. The analysis uses a Reggeized diquark model based fit (for a detailed
description see Refs.[59, 66]). The determination of the values for the tensor charges reported in Table I hinges on
constraints from electron proton and neutron elastic scattering data, and inclusive deep inelastic measurements of the
u and d quarks PDFs. This analysis is therefore model dependent.

In summary, DVMP provides an advantage over the semi-inclusive and inclusive measurements where extrapolation
procedures to the low x regime need to be devised in order to extract the tensor charge reliably. The importance
of low x extrapolations was shown in Ref. [48] where results were given both in the x

Bj

range of the fitted data
(x

Bj

& 0.06), and by extrapolating to x = 10�5.
In Figure 4 we demonstrate the sensitivity of future pseudoscalar meson production data to the values of the tensor

charge. For illustration, we show only the ⇡0 asymmetry, and we fix �
d

= �0.12. The figure shows curves for varying
�
u

in the range 0.6 � 1.4, whereas the error band was obtained by varying the tensor charge by ±0.08. Additional
information on �

d

will be obtained with ⌘ measurements. The figure illustrates the kind of precision that will be
needed in order to reduce the error on the tensor charge with respect to the values from the analyses reported here.
An accurate extraction of tensor charge and its flavor dependence will be possible at Je↵erson Lab, 12 GeV [? ].

C. Single-hadron SIDIS

Finally, we comment on the pioneer study of the transversity function through single-hadron SIDIS [12–14], leading
to the so-called Collins asymmetry. The latter is described in terms of a TMD Collins Fragmentation Function
convoluted with the TMD transversity PDF, Fig. 1c. The complexity of the framework requires a global fit of the
relevant SIDIS and e+e� data with ad hoc functional forms. The study of the QCD evolutions of TMD functions is
a developing field, in which lots of progress is constantly made. However, the application of the di↵erent proposed
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Notice that ✏
T

has a renormalization scale and scheme dependence that must be cancelled by the corresponding
form factor g

T

.
where The ✏

T

coe�cient carries a / v2/⇤2 dependence9 on the new-physics scale ⇤ and in the SM they vanish
leaving the well-known (V � A) ⇥ (V � A) structure generated by the exchange of a W boson. Such exotic tensor
interaction can be generated for example by the tree-level exchange of a scalar leptoquark.

Precise measurements in beta decay set strong bounds on the combination g
T

✏
T

, namely [69, 70]

|g
T

✏
T

| < 6 · 10�4 (90% C.L.) , (41)

which is expected to be improved by the next generation of experiments. In particular, a measurement of the Fierz
term b in neutron beta decay at the per-mil level, would improve this bound by a factor of 3.

In order to extract a bound on the Wilson coe�cient ✏
T

from Eq. (41) it is necessary to know the value of the
tensor charge g

T

. Such a bound on ✏
T

can be translated into bounds on masses and couplings in any specific new
physics setup.

It is clear that a large error in the tensor charge will dilute the strong bound given in Eq. (41), which in fact
vanishes completely if the tensor charge is zero. In other words, the sensitivity of beta decay measurements to exotic
tensor interactions depends on our knowledge of the tensor charge. This issue was studied in Ref. [] where it was
shown that a precision of 10-15% in g

T

was necessary to fully exploit a future determination of the Fierz term b at
the per-mil level. Let us do a similar analysis here to understand the impact of the phenomenological determinations
of g

T

explained in the previous sections.
Since the theoretical error is the dominating one in both lattice and phenomenological determinations, one cannot

assume a gaussian distribution of the error around the central value. In order to deal with this situation we follow
Ref. [2] and we calculate the confidence interval on ✏

T

using the so-called R-Fit method [71]. In this scheme the
theoretical likelihoods do not contribute to the �2 of the fit and the corresponding QCD parameters take values
within certain “allowed ranges”. In our case, this means that g

T

is restricted to remain inside a given interval, e.g.
0.16  g

T

 1.20 for the current determination from di-hadron SIDIS (Section ??) TO BE UPDATED. Notice that
all values inside this range are treated on an equal footing, whereas values outside the interval are not permitted
irrespective of how close they are from the edges of the allowed range. The chi-squared function is then given by

�2(✏
T

) = min
g

T

✓
[g

T

✏
T

]exp � g
T

✏
T

� [g
T

✏
T

]exp

◆
2

, (42)

where the minimization is performed varying g
T

within its allowed range. A careful look at this function reveals that
the bound on ✏

T

depends only on the lower limit of the tensor charge, as long as the experimental determination of
g
T

✏
T

is compatible with zero at 1�.
In this way we obtain the limits on the Wilson coe�cient ✏

T

that are shown in Fig. 6, using di↵erent values of the
tensor charge. Let us remind for comparison that the bound obtained from the analysis of LHC data carried out in
Ref. [72] is |✏

T

| < 0.0013.

V. CONCLUSIONS

The possibility of obtaining the scalar and tensor charges directly from experiment with su�cient precision, gives
an entirely di↵erent leverage to neutron beta decay searches.

Due to its non-perturbative nature, the nucleon structure can only be unveiled using complementary methods such
as e↵ecive field theories, lattice calculations, models for the nucleon structure, Schwinger-Dyson based techniques

9 v denotes the electroweak symmetry breaking scale, v = (
p
2GF )�1/2 ' 246 GeV.
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next section where we show results from example fits for
different scenarios, we define for each scenario which of the
ymod,i parameters are to be considered a free or calculated
parameter. We note a subtlety in regards to λ: if it is a fit
parameter, rather than a calculated one, it can be modified
by the appearance of a right-handed coupling emergent from
physics BSM [38]. Thus the determined value of λ from a fit
of neutron beta decay observables need not be equivalent to
the calculated value of λ = gA/gV . However, present lattice
calculations of gA are of rather poorer precision than empirical
determinations. The above sets could, of course, be trivially ex-
panded to accommodate measurements of other observables;
for example, the {xexp} set could include measurements of the
neutrino asymmetry B and (direct) measurements of the Fierz
interference term bBSM (via spectral shape measurements),
and/or the {ymod} set could include bBSM.

As per the usual prescription [22], we define our χ2 function
in terms of a likelihood function L(ymod) for the {ymod}
parameter set as

χ2(ymod) = −2 lnL(ymod). (28)

Following the Rfit framework [1,2], we define L(ymod) to be
the product of an “experimental likelihood” function,Lexp, and
a “theoretical likelihood” function, Lcalc,

L(ymod) = Lexp({xexp}, {xtheo(ymod)})Lcalc({ycalc}). (29)

The experimental likelihood function is defined in the usual
way to be the product of the likelihood functions for each of
the Nexp experimental results,

Lexp({xexp}, {xtheo}) =
Nexp∏

i=1

Lexp,i , (30)

where, in the ideal case, the individual likelihood functions are
taken to be Gaussian,

Lexp,i = 1
√

2πσ 2
exp,i

exp

[

−
(xexp,i − xtheo,i)2

2σ 2
exp,i

]

, (31)

where σexp,i denotes the statistical uncertainty of the ith
experimental result. Of course, the individual experimental
likelihood functions must account for systematic errors, and
the formalism for the inclusion of such within the context of the
Rfit framework is described in detail in Refs. [1,2]. However,
a detailed discussion of the impact of experimental systematic
errors is beyond the scope of this paper, as the focus of our
first paper is on the statistical impact of a global fit and the
limitations on such from theoretical uncertainties.

In principle, a theoretical likelihood function could simi-
larly be defined as the product of likelihood functions for each
of the ycalc,i calculated parameters,

Lcalc({ycalc}) =
Ncalc∏

i=1

Lcalc,i , (32)

and under the assumption that the ycalc,i values are Gaussian
distributed, the theoretical likelihood would, by definition,
contribute to the χ2. Such a formulation might not be

appropriate for the treatment of the ycalc,i parameters, for
which the underlying probability distributions are certainly
not known. However, it may well be possible to bound the
value of each ycalc,i parameter on theoretical grounds, such
that the parameter may reasonably assume any value over an
allowed range of [ycalc,i − δycalc,i , ycalc,i + δycalc,i]. It would
be highly unlikely that the true value of the parameter would
fall outside of this range.

Thus, given the lack of knowledge on the underlying
distributions of the ycalc,i parameters, the proposal of the Rfit
scheme [1,2] is to redefine the χ2 function so that the theoret-
ical likelihood does not contribute to the χ2, while the ycalc,i
parameters are permitted to vary freely within their predefined
allowed ranges. In particular, the χ2 is redefined to be

χ2 =
Nexp∑

i=1

(
xexp,i − xtheo,i

σexp,i

)2

− 2 lnLcalc({ycalc}), (33)

where

−2 lnLcalc({ycalc}) ≡
{

0, ∀ ycalc,i ∈ [ycalc,i ± δycalc,i],
∞, otherwise

Thus, under the Rfit scheme, each of the ycalc,i parameters
are bounded, but all possible values of the parameters within
their predefined ranges are treated equally. That is, the value
of χ2 is scanned over the available {yfree} parameter space,
while the values of the {ycalc} parameters are permitted to
vary freely over their predefined ranges at each point in the
{yfree} parameter space. Thus, the central challenge of such
an analysis in Refs. [1,2] is to define the [ycalc,i ± δycalc,i]
allowed ranges carefully because (i) the fit results for the
{yfree} parameters can be interpreted as valid only if the “true”
values for the {ycalc} parameters fall within the allowed ranges;
and (ii) choosing the allowed ranges to be too wide (i.e., too
conservative) could mask the discovery of new physics.

After construction of the χ2, a global fit can be then be
pursued under two different types of analyses: (i) determining
values for the SM parameters; and (ii) assessing the validity
of the SM.

B. Determining standard Model parameters

Here the goal is neither to assess the validity of the
SM nor to search for evidence of new physics. Instead, the
SM is assumed to be valid, and the global fit is employed,
optimally, to determine values for all of the {ymod} parameters.
In this case, the minimum value of χ2(ymod), computed
according to Eq. (28), is obtained by allowing all of the
Nmod parameters to freely vary. The resulting minimum value
is denoted χ2(ymod)min. Confidence levels, P(ymod), on the
values of the parameters obtained at χ2(ymod)min are calculated
according to

P(ymod) = Prob(&χ2(ymod), Ndof), (34)

where, as usual,

&χ2(ymod) = χ2(ymod) − χ2(ymod)min, (35)

and Prob(· · · ) denotes the probability for a value of χ2 >
&χ2(ymod) for Ndof degrees of freedom.

065504-7
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Notice that ✏
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has a renormalization scale and scheme dependence that must be cancelled by the corresponding
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coe�cient carries a / v2/⇤2 dependence9 on the new-physics scale ⇤ and in the SM they vanish
leaving the well-known (V � A) ⇥ (V � A) structure generated by the exchange of a W boson. Such exotic tensor
interaction can be generated for example by the tree-level exchange of a scalar leptoquark.

Precise measurements in beta decay set strong bounds on the combination g
T

✏
T

, namely [69, 70]
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| < 6 · 10�4 (90% C.L.) , (41)

which is expected to be improved by the next generation of experiments. In particular, a measurement of the Fierz
term b in neutron beta decay at the per-mil level, would improve this bound by a factor of 3.

In order to extract a bound on the Wilson coe�cient ✏
T

from Eq. (41) it is necessary to know the value of the
tensor charge g

T

. Such a bound on ✏
T

can be translated into bounds on masses and couplings in any specific new
physics setup.

It is clear that a large error in the tensor charge will dilute the strong bound given in Eq. (41), which in fact
vanishes completely if the tensor charge is zero. In other words, the sensitivity of beta decay measurements to exotic
tensor interactions depends on our knowledge of the tensor charge. This issue was studied in Ref. [] where it was
shown that a precision of 10-15% in g

T

was necessary to fully exploit a future determination of the Fierz term b at
the per-mil level. Let us do a similar analysis here to understand the impact of the phenomenological determinations
of g
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explained in the previous sections.
Since the theoretical error is the dominating one in both lattice and phenomenological determinations, one cannot

assume a gaussian distribution of the error around the central value. In order to deal with this situation we follow
Ref. [2] and we calculate the confidence interval on ✏

T

using the so-called R-Fit method [71]. In this scheme the
theoretical likelihoods do not contribute to the �2 of the fit and the corresponding QCD parameters take values
within certain “allowed ranges”. In our case, this means that g

T

is restricted to remain inside a given interval, e.g.
0.16  g

T

 1.20 for the current determination from di-hadron SIDIS (Section ??) TO BE UPDATED. Notice that
all values inside this range are treated on an equal footing, whereas values outside the interval are not permitted
irrespective of how close they are from the edges of the allowed range. The chi-squared function is then given by
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where the minimization is performed varying g
T

within its allowed range. A careful look at this function reveals that
the bound on ✏

T

depends only on the lower limit of the tensor charge, as long as the experimental determination of
g
T

✏
T

is compatible with zero at 1�.
In this way we obtain the limits on the Wilson coe�cient ✏

T

that are shown in Fig. 6, using di↵erent values of the
tensor charge. Let us remind for comparison that the bound obtained from the analysis of LHC data carried out in
Ref. [72] is |✏

T

| < 0.0013.

V. CONCLUSIONS

The possibility of obtaining the scalar and tensor charges directly from experiment with su�cient precision, gives
an entirely di↵erent leverage to neutron beta decay searches.

Due to its non-perturbative nature, the nucleon structure can only be unveiled using complementary methods such
as e↵ecive field theories, lattice calculations, models for the nucleon structure, Schwinger-Dyson based techniques

9 v denotes the electroweak symmetry breaking scale, v = (
p
2GF )�1/2 ' 246 GeV.

Rfit method:

Pavia 2015 1D  for  <εT> only 
• present: |εT| < 0.00162 
• compared to 

Naviliat-Cuncic & González-Alonso: |εT| < 0.0013

Monte Carlo approach:



• with gS = 1.02 ± 0.11                  
from González-Alonso and  Martin 
Camalich, PRL 112


• with gT = 0.81 ± 0.44                  
from Pavia 15


• to be compared to <gT>=0.839(357) 
from GGL & Pavia 15

εT vs. εS plane from b0+ and b
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1σ errors 
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WORTH MENTIONING 

HADRONIC MATRIX ELEMENTS RELATED TO OUTSTANDING QCD QUESTIONS 
STRUCTURE OF HADRONS→CONFINEMENT, CHIRAL SYMMETRY,...

CONCLUSIONS

Evaluation of bounds for BSM tensor interaction 
➡ from hadronic matrix elements extracted from experiments 
➡ as opposed to lattice calculations  

★  Hadronic uncertainties are still very large 
★  However, competitive results expected from future hadronic experiments 

★  Complementarity +testing of lattice results



FUTURE OF BETA DECAY OBSERVABLES

Neutron decay rate parameterized:  

Nab collaboration plans to measure b, term sensitive to CS and CT with precision of 
10^-3 

abBA collaboration (and others) plans to measure A and B angular coefficients for 
polarized neutrons, B is also sensitive to CS and CT with precision of 10^-3
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We neglect effects of time-reversal violation, i.e., we consider the above 8 cou-
plings to be real.

In neutron decay experiments the outgoing spins are usually not observed. Sum-
ming over these spin quantities, and neglecting the neutrino masses, one can evaluate
the triple differential decay rate to be:9

d3Γ =
1

(2π)5
G2

F |Vud|2

2
peEe (E0 − Ee)

2 dEedΩedΩν

×ξ
[
1 + a

pe · pν
EeEν

+ b
me

Ee
+ sn

(
A

pe

Ee
+ B

pν
Eν

+ . . .

)]
, (4)

where pe, pν , Ee, and Eν are the electron (neutrino) momenta and total energies,
respectively, E0 is the maximum electron total energy, me the electron mass, sn the
neutron spin, and the Ωi denote solid angles. Quantities a, A, and B are the angular
correlation coefficients, while b is the Fierz interference term. The latter, and the
neutrino-electron correlation a, are measurable in decays of unpolarized neutrons,
while the A and B, the beta and neutrino asymmetry parameters, respectively,
require polarized neutrons. The dependence of a, b, A, and B on the coupling
constants Lj and Rj is described in Ref. 7. We mention that in the presence of LH
S and T couplings B depends on the electron energy: B = B0 + bν

me
Ee

, where bν is
another Fierz-like parameter, similar to b.7,9 We note that a, A, and B0 are sensitive
to non-SM couplings only in second order, while b and bν depend in first order on
LS and LT . A non-zero b would indicate the existence of LH S and T interactions.

Another observable is C, the proton asymmetry relative to the neutron spin.
Observables related to the proton do not appear in Eq. (4). However, the proton is
kinematically coupled to the other decay products. The connection between C and
the coupling constants Lj and Rj is given in Refs. 7 and 10.

We also use the ratio of the Ft0
+→0+

values in superallowed Fermi (SAF) decays
to the equivalent quantity in neutron decay, Ftn:

rFt =
Ft0

+→0+

Ftn
=

Ft0
+→0+

fnt(1 + δ′R)
=

Ft0
+→0+

fR ln (2)τn
, (5)

where fn = 1.6887 is a statistical phase-space factor.1 The nucleus-dependent
(outer) radiative correction δ′R, and O(α2) corrections,11–13 change fn by ∼ 1.5%
to fR = 1.71385(34)a. The corrections implicitly assume the validity of the V −A
theory.15 The dependence of rFt on coupling constants Lj and Rj is given in Ref. 7.

An electrically charged gauge boson outside the SM is generically denoted W ′.
The most attractive candidate for W ′ is the WR gauge boson associated with the
left-right symmetric models,16,17 which seek to provide a spontaneous origin for
parity violation in weak interactions. WL and WR may mix due to spontaneous

aThe most recently published value of fR = 1.71335(15)14 used fn = 1.6886, and did not include
the corrections by Marciano and Sirlin.12 Applying the Towner and Hardy prescription for splitting
the radiative corrections13 increases the uncertainty in fR slightly, to reproduce Eq. (18) in Ref. 12.
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SCALE OF NEW PHYSICS

Redefinition of "new" scale 
effective coupling (rescaled) 

but underlying mechanism not known

GF = g2/(4
p
2m2

W)

✏i / m2
W/⇤2

i

where mW enters  through 


