

THE TENSOR AND THE SCALAR CHARGES OF THE NUCLEON FROM HADRON PHENOMENOLOGY

AURORE COURTOY

Instituto de Física, UNAM, Mexico

How can hadronic physics help BSM search?

Hadronic observables extraction

Impact on β -decay observables

partially based on Phys.Rev.Lett. 115 (2015) 162001

- ***** Direct search
 - * Large-x PDF
 - * α_s
- * Indirect search
 - * Parity Violating DIS
 - * Beyond V-A interactions

...

 \bigstar

QCD FOR BSM

$$N(p_n) \longrightarrow P(p_p)e^-(p_e)\bar{\nu}_e(p_\nu)$$

$$can be sketched as$$

$$(I = \int_{n}^{r} u e^-(p_e)\bar{\nu}_e(p_\nu) \otimes [\langle P|\bar{u} \Gamma d|N \rangle],$$
Flectroweak:
V-A
$$M = -i\frac{G_F}{\sqrt{2}} \bar{u}_e \gamma_\mu (1 - \gamma^5) v_\nu \langle p|\bar{u}\gamma^\mu (1 - \gamma^5) d|n \rangle \cos \theta_e$$

BETA DECAY IN SM

***** Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

***** Effective Hamiltonian for β -decay

- Lorentz low energy constants C_{S,P,V,A,T}
- SM 1param $\lambda = -C_A/C_V$
- $a(\lambda), A(\lambda), B(\lambda)$
- * b=0 in SM

sensitivity of neutron beta decay to new physics

 $\star \qquad B \subset b_{\nu} = 0 \text{ in SM}$

BETA DECAY OBSERVABLES

***** Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

* b=0 in SM

sensitivity of neutron beta decay to new physics

★ $B \subset b_{\nu} = 0$ in SM

$$b = \frac{2\sqrt{1-\alpha^2}}{1+3\lambda^2} \left[\operatorname{Re}\left(\frac{C_{\rm S}}{C_{\rm V}}\right) + 3\lambda^2 \operatorname{Re}\left(\frac{C_{\rm T}}{C_{\rm A}}\right) \right]$$

b sensitive to scalar and tensor LEC

- same for b_{v}

BETA DECAY OBSERVABLES

Extract LEC

$$C_{V} = C_{V}^{\text{SM}} + \delta C_{V}$$

$$C_{V}' = C_{V}^{\text{SM}} + \delta C_{V}'$$

$$C_{A} = C_{A}^{\text{SM}} + \delta C_{A}$$

$$C_{A}' = C_{A}^{\text{SM}} + \delta C_{A}'$$

$$C_{S} = \delta C_{S}$$

$$C_{S}' = \delta C_{S}'$$

$$C_{T} = \delta C_{T}$$

$$C_{T}' = \delta C_{T}'.$$

from various processes \star

- * decay rate for super allowed $0^+ \rightarrow 0^+$
- * decay rate for beta decay (total, angular c
- ***** radiative pion decay

NEW PHYSICS IN δ

 $C_V^{\rm SM} = g_V$ $C_A^{\rm SM} = -g_A$

 $\lambda \rightarrow$ pretty well known

Best constraints so far

 $C_S/C_V = 0.0014(13)$

 $@1\sigma$

[Hardy et al., PRC91]

 $-0.0026 < {
m C_T}/{
m C_A} < 0.0024$ @95%CL

[Pattie et al., PRC88]

New particles hints

- in loops
- mediators of interaction

NEW FUNDAMENTAL INTERACTIONS

EFT AT THE QUARK LEVEL

$$\mathcal{L}^{ ext{\tiny (eff)}} = \mathcal{L}_{ ext{\tiny SM}} + \sum_i rac{1}{\Lambda_i^2} \mathcal{O}_i$$

 $d_i \to u_i l^- \bar{\nu}_l$

BETA DECAY IN EFT

[Bhattarchaya et al., PRD85] [Cirigliano et al., NPB 830]

[Bhattarchaya et al., PRD85] [Cirigliano et al., NPB 830]

$$\overset{\mathfrak{r}}{\longrightarrow} u \, e^{-}(p_e) \bar{\nu}_e(p_{\nu}) \otimes \left[\langle P | \bar{u} \, \Gamma \, d | N \rangle \right] \overset{\mathfrak{r}}{\rightarrow} u \, e^{-}(p_e) \bar{\nu}_e(p_{\nu}) = \langle P | \bar{u} \, \Gamma \, d | N \rangle$$

$$\begin{split} C_{\rm SM} &= \frac{G_F}{\sqrt{2}} \quad |g_S \epsilon_S| = 0.0014 \pm 0.0013 \quad \text{@10} \quad \text{DARD MODEL} \\ &|g_T \epsilon_T| < 6 \cdot 10^{-4} \\ &\text{@95\%cL} \end{split} \\ C_{\rm S} &= \frac{G_F}{\sqrt{2}} V_{ud} \, g_S \epsilon_S \\ C_{\rm T} &= \frac{G_F}{\sqrt{2}} \, V_{ud} \, 4 \, g_T \epsilon_T \end{split}$$

Precision with which the NEW COUPLINGS can be measured depend on the knowledge of hadronic charges

New LEC factorized into hadronic contribution & new EW interaction

LEC IN TERMS OF HADRONIC × NEW INT.

 $\langle P(p_p, S_p) | \bar{u} \Gamma d | N(p_n, S_n) \rangle$

Proton

FORM FACTORS

MATCHING AT HADRONIC LEVEL

- ***** Nonlocal matrix element for proton structure
 - ***** Parton Distribution Functions
- **built from Lorentz symmetry** from vectors at hand
- defined in Bjorken scaling
- nonperturbative objects
- 1st principle related to "charges"

Fundamental charges for $\gamma_{\mu} \& \gamma_{\mu}\gamma_{5}$ only Structural charges for the others

Scalar & tensor charge accessible through sum rules of Parton Distributions

HADRONIC STRUCTURE

Lorentz structure **Discrete symmetries** Vectors at hand...

To leading twist:

Kinematics of the Bjorken scaling $0^2 \rightarrow \infty$ $p.q \rightarrow \infty$ $Q^2/2p.q=x=finite$

ACCESS TO DISTRIBUTION FUNCTIONS

TRIPTIC OF TARGET SPIN ASYMMETRY SIDIS PRODUCTION OF PION PAIRS @ COMPASS & HERMES

2002-4 Deuteron Data

2007 Proton Data

EXAMPLE OF DATA & EXTRACTION

- * Semi-inclusive processes
 - * $eN \rightarrow e \pi X$ Torino et al
 - * $eN \rightarrow e(\pi\pi) X$ Pavia et al
- * Exclusive: $eP \rightarrow e \pi^0 P$ GGL

TRANSVERSITY PDF

MORE DATA + MONTE CARLO LIKE FITTING

procedure repeated 100 times (until reproduce mean and std. deviation of original data) Pavia 15 JHEP1505 (2015) 123

SOLUTIONS

Pavia flexible 0.125

LATTICE RESULTS PRESENT TINY ERRORS W.R.T. HADRONIC EXTRACTIONS

HERE TESTING GROUND FOR LATTICE QCD CALCULATIONS

ISOVECTOR TENSOR CHARGE

New PNDME: g_T =0.987(51)(20) [PRD94] NME compatible results [1611.07452]

Ye et al.: $g_T = 0.64 \pm 0.021$ ($Q^2 = 2.4 \text{GeV}^2$)

NOW WITH g_T \pm \sigma_{gT} AND $|g_T \epsilon_T| < 6 \cdot 10^{-4}$

we find....

TENSOR INTERACTION AS OF NOW

- **★** HESSIAN PROPAGATION
 - Usual error propagation

$$\sigma_f^2 = \sum_{a,b \,\in\, \text{params}} \frac{\partial f}{\partial a} \operatorname{cov}_{ab} \frac{\partial f}{\partial b} \quad \text{ with here } \quad \Delta \chi^2 = 1$$

- ★ MONTE CARLO APPROACH
 - N replicas of data within xo gaussian noise

$$f \pm \sigma_f = X\% CL \times f_i, \qquad i = 1, \cdots N$$

 $X=68,90,95,\ldots$

★ SCATTER PLOT

- 2+ D
- Random generation of allowed values within xo

\star RFIT METHOD

- Theoretical param anywhere within $[a-\sigma_a, a+\sigma_a]$ only
- other params as usual

$$-2\ln\mathcal{L}_{calc}(\{y_{calc}\}) \equiv \begin{cases} 0, \\ \infty \end{cases}$$

$$\forall y_{\text{calc},i} \in [y_{\text{calc},i} \pm \delta y_{\text{calc},i}]$$
otherwise

ERROR TREATMENT

NOW WITH $g_T \pm \sigma_{gT}$

AND

 $|g_T \epsilon_T| < 6 \cdot 10^{-4}$

Rfit method:

Monte Carlo approach:

Pavia 2015 1D for $<\epsilon_T>$ only

- present: lε_Tl < 0.00162
- compared to
 Naviliat-Cuncic & González-Alonso: Ιε_TI < 0.0013

TENSOR INTERACTION AS OF NOW

ϵ_T vs. ϵ_S plane from $b_0{}^+$ and b

Warning: not a global fit

- with gs = 1.02 ± 0.11
 from González-Alonso and Martin Camalich, PRL 112
- with $g_T = 0.81 \pm 0.44$ from Pavia 15
- to be compared to <g_>=0.839(357) from GGL & Pavia 15

1σ errors

- Hessian in blue & pink
- Rfit method in red
- Scatter plot in blue

NEW SCALAR-TENSOR

DIHADRON ASYMMETRY FOR UNPOLARIZED TARGET INVOLVING SCALAR PDF (subleading)

Jefferson Lab

SCALAR CHARGE related to e(x=0)

lots of things to think of...

CAN WE DO THE SAME FOR SCALAR CHARGE?

- ***** Evaluation of bounds for BSM tensor interaction
 - from hadronic matrix elements extracted from experiments
 - as opposed to lattice calculations
- * Hadronic uncertainties are still very large
- * However, competitive results expected from future hadronic experiments
- * Complementarity +testing of lattice results

WORTH MENTIONING

HADRONIC MATRIX ELEMENTS RELATED TO OUTSTANDING QCD QUESTIONS STRUCTURE OF HADRONS→CONFINEMENT, CHIRAL SYMMETRY,...

CONCLUSIONS

Neutron decay rate parameterized:

$$d^{3}\Gamma = \frac{1}{(2\pi)^{5}} \frac{G_{F}^{2} |V_{ud}|^{2}}{2} p_{e} E_{e} \left(E_{0} - E_{e}\right)^{2} dE_{e} d\Omega_{e} d\Omega_{\nu}$$
$$\times \xi \left[1 + a \frac{\mathbf{p}_{e} \cdot \mathbf{p}_{\nu}}{E_{e} E_{\nu}} + b \frac{m_{e}}{E_{e}} + \mathbf{s}_{n} \left(A \frac{\mathbf{p}_{e}}{E_{e}} + B \frac{\mathbf{p}_{\nu}}{E_{\nu}} + \dots\right)\right]$$

- Nab collaboration plans to measure b, term sensitive to C_s and C_T with precision of 10⁻³
- * abBA collaboration (and others) plans to measure A and B angular coefficients for polarized neutrons, B is also sensitive to C_S and C_T with precision of 10^-3

FUTURE OF BETA DECAY OBSERVABLES

- * Redefinition of "new" scale
- \star effective coupling (rescaled) $\epsilon_{
 m i} \propto m_{
 m W}^2/\Lambda_{
 m i}^2$

where m_W enters through ${f G_F}={f g^2}/(4\sqrt{2}m_W^2)$

***** but underlying mechanism not known

SCALE OF NEW PHYSICS