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Introduction

How does a parton travel through the QGP and deposits
energy-momentum?

I address this questions about the QGP medium’s response using
linearized viscous hydrodynamics.

What can we learn from the energy-momentum deposition into the
medium?

Deposition could be on the sides of the path traveled, or along the
direction of the traveling parton.

This is work in progress and I will briefly explain the beginning of my
work.
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Equilibrium Medium

The medium 4-velocity,

uµ = (1,u) , u =
g

ϵ0(1+ c2s)
(1)

with g the momentum density related with the perturbation. ϵ0 and
cs static background’s energy density and sound velocity.

By equilibrium conditions, local conservation laws are presented,

∂µΘ
µν
0 = 0, Θµν

0 = −Pgµν + (ϵ+ P)uµuν (2)
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Introducing a disturbance

Assuming that the disturbance introduced by the parton is small, the
medium’s energy-momentum tensor can be written as [1]

Θµν = Θµν
0 + δΘµν (3)

where Θµν
0 is the equilibrium energy-momentum tensor and δΘµν is

the perturbation made by the parton.

Considering at first order in shear (η) and bulk (ξ) viscosity,

δΘ00 = δϵ, δΘ0i = g (4)

δΘij = δijc2sδϵ− 3
4Γs(∂

igj + ∂jgi − 2
3δij∇ · g)− ξδij∇ · g (5)

with Γs ≡ 4η/3ϵ0(1+ c2s), the sound attenuation length.
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Introducing a disturbance

The hydrodynamics equations are,

∂0δϵ+∇ · g = J0 (6)

∂0gi + ∂jδΘ
ij = Ji (7)

with Jµ the source of the disturbance.

Substituting the tensor components, and using the Fourier transform
for these equations, the energy and momentum density are written
in terms of the source components,

δϵ =
ik · J(k, ω) + J0(k, ω)(iω − Γsk2)

ω2 − c2s + iΓsωk2
(8)

gL =
i
[
ω
k2 k · J(k, ω) + c2sJ0(k, ω)

]
ω2 − c2sk2 + iΓsωk2

, gT =
iJT

ω + i 34Γsk
2 (9)
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Localized disturbance source

The parton can be represented by a localized source, as it’s chosen
in [1]

Jν(x, t) =
(
dE
dx

)
vνδ(x− vt) (10)

dE/dx is the parton’s energy loss per unit length and it’s taken as a
constant along the parton’s path. vν = (1, v) is the parton’s velocity.

Its Fourier’s transform,

Jν(x, t) = 2π
(2π)4

(
dE
dx

)
vνδ(k · v− ω)

The last integration is rewritten using dimensionless quantities,

ξ ≡
(
3Γs
2v

)
kT, α ≡ z

(
3Γs
2v

)
, β ≡

(
3Γs
2v

)−1
(11)
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Taking as parameters α and β, the plots were performed from an
alpha minimum value of 0.5, to 6, and from −6 to 6 for β.

Figure 1: (g⃗T)z, (g⃗T)y (g⃗L)z, (g⃗T)y and δϵ quantities for a localized source with
αmin = 0.5
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An extended source

An extended source was proposed, inspired by [2]. The main idea is
the comparison with the previously localized source,

Jν (⃗x, t) =
(
dE
dx

)
vν 1(√

2πσ
)3 e− (⃗x−⃗vt)2

2σ2 (12)

Parton’s velocity v⃗ makes a constant angle with the position vector x⃗,
represented by x⃗ · v⃗ = |⃗x||⃗v| cos γ. Again, the source is transform to
the Fourier space,

Jν (⃗k, ω) = 1
(2π)4

(
dE
dx

) √
2πσ

v sin3 γ
vνe−

σ2
2v2

[(
1+ 4

sin2 γ

)
ω2− 8⃗v·⃗k

sin2 γ
ω+ 4v2

sin2 γ
k2
]
(13)
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It is feasible to calculate (g⃗T)z performing the integration over ω and
kz using a contour integral that contains at least one of the function
poles. The final expression was rewritten using the variables α, β
and ξ,

(g⃗T)z =
1

(2π) 112

(
dE
dx

)
σ

2 sin2 γ

(
2v
3Γs

)3 ∫ ∞

0
dξξ2J0(βξ) e−αξ (14)

Figure 2: From left to right, (g⃗T)z for an extended source with αmin = 0.1,
αmin = 0.5, αmin = 1.0
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Final Remarks

It’s possible to obtain similar plots for the other energy-momentum
components.

The final integration could be performed using a Monte-Carlo
integration method, and then, to compare with the integration
already done for a localized source.

If we want to consider a σ value that is far away from the one we are
expecting in the delta approximation, it would be convenient to
consider non-linear terms in the hydrodynamics equations.

This is work in progress and eventually we want to generate initial
conditions with energy and momentum maps that can be used as
input on numerical simulations in different hydrodynamical set-ups.
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