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Abstract. The quark-gluon plasma (QGP) is created under extreme conditions, such as
the ones prevailing in heavy ion collisions. The characterization of the QGP can be done
using high-pT probes such as the partons that are created through hard scatterings in the
fireball. These fast-moving partons lose energy and momentum along their traveled path
through the medium. The parton deposition of energy-momentum creates an in-medium
disturbance that can be described using approximations within relativistic hydrodynamics
in a defined regime of the QGP evolution. Based on earlier research in this field, we study
the use of extended sources that depend on the location of the parton-jet in the initial
stages of the QGP evolution. We explore this approach as a way to complement the
current numerical landscape of hydrodynamical QGP studies and to eventually generate
initial conditions that can be used as input of hydrodynamical numerical simulations.

1 Introduction

Current experimental evidence points to the creation of the quark-gluon plasma in heavy ion experi-
ments such as the ones taking place at the Large Hadron Collider (LHC) at CERN and the Relativistic
Heavy Ion Collider (RHIC) at BNL. These experiments have allowed a more detailed characterization
of the QGP, mainly in the transition phase from quarks to hadrons: they have discovered the QGP to be
a strongly-coupled fluid, with low viscosity [1]. In these heavy-ion collisions, hadrons are created and
they reach the detectors with large collective velocity. In order to characterize the QGP properties, we
can use high pT probes such as hard-scattering partons, that are created in the bulk of the plasma and
that travel across it, loosing energy and momentum. In this work we report on the energy-momentum
deposition of partons modeled as extended sources and compare with previous results.
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2 Perturbing the medium in local equilibrium

In ultra-relativistic heavy-ion collisions the medium never reaches the equilibrium state, but it is pos-
sible to consider it in local equilibrium. Local conservation laws guarantee that ∂µΘ

µν
0 = 0 and

Θ
µν
0 = −Pgµν + (ε + P)uµuν, where the medium 4-velocity is uµ = (1,u) and where the momentum

density g connects with the 3-velocity as u = g/ε0(1 + c2
s). ε0 is the static background energy density

and cs is the sound velocity. Assuming that the disturbance introduced by the parton is small, the
medium energy-momentum tensor can be written as Θµν = Θ

µν
0 + δΘµν, where Θ

µν
0 is the equilibrium

energy-momentum tensor and δΘµν is the perturbation made by the parton [2]. The energy-momentum
tensor satisfies ∂µδΘµν = Jµ and ∂µΘ

µν
0 = 0 where Jµ is the source of the disturbance. If we consider

a first order approximation in shear (η) and ignoring bulk viscosity effects, the perturbation to the
energy-momentum tensor will have the following components,

δΘ00 = δε, δΘ0i = g, δΘi j = δi jc2
sδε −

3
4 Γs(∂ig j + ∂ jgi − 2

3δi j∇ · g) (1)

where the sound attenuation length is Γs ≡ 4η/3ε0(1 + c2
s) and ε(t, x) = ε0 + δε(t, x) with ε0 is the

energy density of the background fluid, and δε the disturbance energy density. Applying a Fourier
Transform to Eq. (1), the longitudinal and transverse components of the momentum density as well
as the energy density are given by

gL =
i
[
ω
k2 k · J(k, ω) + c2

s J0(k, ω)
]

ω2 − c2
sk2 + iΓsωk2 , gT =

iJT

ω + i 3
4 Γsk2

, δε =
ik · J(k, ω) + J0(k, ω)(iω − Γsk2)

ω2 − c2
s + iΓsωk2 ,

(2)
where g = gL + gT and gL = (g · k)k/k2.

3 Localized versus extended source

The in-medium perturbation that the traveling parton generates can be modeled by a localized source
Jν(x, t) = (dE/dx)vνδ(x − vt), as it was done in Ref. [2] where dE/dx is the parton energy-loss per
unit length and vν = (1, v) is the parton velocity. In order to model a jet (instead of a parton) passing
through the medium, an extended source was proposed in Ref. [3]. Inspired by this proposal, we study
a simplified version of an extended source and we make a comparison with the results of Ref. [2] for
a localized source. We now consider an extended source

Jν(x, t) =

(
dE
dx

)
vν

1(√
2πσ

)3 exp
{
−

(x − vt)2

2σ2

}
, (3)

where the parameter σ allows us to control the extension of the energy-momentum deposit. For this
study, we will consider x · v = |x||v| cos θ0, with fixed θ0. The extended source of Eq. (3) in Fourier
space is now,

Jν(k, ω) =
1

(2π)4

(
dE
dx

) √
2πσ

v sin3 θ0
vν exp

{
−

2σ2

v2 sin2 θ0

[(
1 +

1
4

sin2 θ0

)
ω2 − 2v · k ω + v2k2

]}
. (4)

Using Eqs.(2) and (4), we can calculate, for example (gT )z as

(gT )z =
i

(2π)4

(
dE
dx

) √
2πσ

v sin3 θ0

∫
d3k

(2π)3

∫
dω
2π

k2
T /(k

2
T + k2

z )

ω + i 3
4 Γs(k2

T + k2
z )

e
− 2σ2

v2 sin2 θ0
[(1+ 1

4 sin2 θ0) ω2−2v·k ω+v2k2]
.



Figure 1: The integrand of (gT )z in Eq. (5) is shown on the left hand side for a localized source as
was reported in Ref. [2] and, on the right hand side the resulting (gT )z with the present analysis of an
extended source. We have performed the ξ integral in the αmin ≤ α ≤ +6 and −6 ≤ β ≤ +6 range for
αmin = 0.5.

The integrals over ω and k can be performed using similar methods as those reported in Ref. [2]
where using cylindrical coordinates k = (kT cos φk, kT sin φk, kz) and x = (xT cos φx, xT sin φk, z), we
can describe the momenta both along and transverse to the traveled path, with v = vẑ. Using this and
contour integration to calculate (gT )z, (gT )y and δε we arrive at

(gT )z =
1

(2π)
11
2

(
dE
dx

)
σ

2 sin2 θ0

(
2v

3Γs

)3 ∫ ∞

0
dξ ξ2 J0(βξ) e−αξ ,

(gT )y =
1

(2π)
11
2

(
dE
dx

)
σ

2 sin3 θ0

(
2v

3Γs

)3 ∫ ∞

0
dξ ξ2 J1(βξ) e−αξ , (5)

δε =
1

(2π)
11
2

(
dE
dx

)
9πσ

4v sin3 θ0

(
2v

3Γs

)3 ∫ ∞

0
dξ

(
Aξ2 + Bξ + C

)
J0(βξ) e−αξ

where A = −4 σ2

sin2 θ0

(
2v

3Γs

) (
cs
v

)2
, B = −1 and C =

(
4v
Γs

σ2

sin2 θ0
+ vt − 3Γs

2v −
vα
Γs

) (
cs
v

)2
and where we have

used the dimensionless variables ξ ≡
(

3Γs
2v

)
kT , α ≡

(
3Γs
2v

)−1
|z| and β ≡

(
3Γs
2v

)−1
xT . In order to visualize

the energy-momentum deposition, we construct 3D plots of the integrands I(α, β) of Eq. (5), by per-
forming a numerical integration on the dimensionless variable ξ. In Figure 1, on the left hand side we
show the integrands of (gT )z for a localized source as was reported in Ref. [2] and, on the right hand
side the resulting integrand of (gT )z with the present analysis of an extended source where we have
integrated in the αmin ≤ α ≤ +6 and −6 ≤ β ≤ +6 range for αmin = 0.5. Notice how the extended
source gives a smother profile near the source, which allows for an easier numerical treatment of the
collection of the signal. Figure 2, shows the integrands of (gT )y and δε where we have performed the
ξ integration in the same range as in the previous figure. On the left column we show the results for a
localized source and on the right column the corresponding plots with the present analysis. For δε we
use Γs = 0.06, θ0 = π/2 and σ = 0.001. Again, the signal is smoother and for δε the energy deposit is
wider, which is reminiscent of a broad jet.



Figure 2: We plot the integrands of (gT )y and δε in Eq. (5) where we have performed the ξ integration
in the same range as in the previous figure. On the left column we show the results for a localized
source as was reported in Ref. [2] and, on the right column the corresponding plots with the present
analysis of an extended source. (gT )y and δε for a localized source (left) and an extended source
(right) with αmin = 0.5. For δε we use Γs = 0.06, θ0 = π/2 and σ = 0.001.

In this work we report on the energy-momentum deposition of partons modeled as extended
sources and compare with previous results, as a tool to study initial conditions for hydrodynamical
numerical simulations and other relevant QGP observables, which will be reported elsewhere [4].
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