Dynamics of inhomogeneous chiral condensates
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Abstract. We study the dynamics of the formation of inhomogeneous chirally broken
phases in the final stages of a heavy-ion collision, with particular interest on the time
scales involved in the formation process. The study is conducted within the framework of
a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the
Nambu—Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional
Bjorken flow and its effect on the formation of inhomogeneous condensates is investi-
gated. We also use a free energy functional from a nonlocal Nambu—Jona-Lasinio model
which predicts metastable phases that lead to long-lived inhomogeneous condensates be-
fore reaching an equilibrium phase with homogeneous condensates.

1 Introduction

The study of the phase diagram of strongly interacting matter as a function of the temperature and
baryon chemical potential has been an active field of research since the early days of nuclear physics.
In the early days, the field was driven by studies of cold nuclear matter and aimed at understanding
the structure of atomic nuclei and the central regions of neutron stars. With the discovery of the
quark-gluon substructure of nucleons and the establishment of quantum chromodynamics (QCD) as
the theory of the strong interactions in the 1970s, the field entered into a new era. The asymptotic
freedom property of QCD predicts the possibility of creating through high-energy heavy-ion collisions
a state of matter resembling the one that presumably existed in the early universe, in that quarks and
gluons are no longer confined in the protons and neutrons as in cold nuclear matter [1].
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In the last few decades, great experimental effort has been devoted to the extraction from heavy-ion
collisions observables relevant for the phase diagram of QCD. For the high temperature region of the
phase diagram, results coming from RHIC-BNL and LHC-CERN suggest that a new state of matter,
the quark-gluon plasma (QGP), is indeed formed after the collision event [2]. Yet, it is not clear what is
the nature of the phase transition between ordinary nuclear matter and the QGP. The beam energy scan
program at RHIC, and programs at the new accelerator facilities FAIR and NICA that are expected
to become operational in a few years, aim at getting clues on the nature of QCD phase transition,
in particular on the chiral critical point and on its vicinity. One exciting possibility is the search of
signals of the formation of spatially varying chiral condensates which break translational invariance,
a subject that has raised a great deal of interest in the last years — for a review and references, see
Ref. [3]. In addition to the expected tricritical endpoint of the first order chiral phase transition, model
calculations suggest the existence of a so-called Lifshitz point, where two homogeneous phases and
one inhomogeneous phase meet [4, 5]. Interestingly, even for ordinary cold nuclear matter there seems
to be a possibility that an inhomogeneous phase can be realized at densities a few times larger than
the ground-state density [6].

Possible observable consequences of inhomogeneous phases have been suggested in the context
of neutron stars. Ref. [7] proposes that the existence of an inhomogeneous chiral phase leads to a
novel cooling scenario for neutron stars, finding a neutrino emissivity with efficiency comparable
with the usual quark cooling or pion cooling. Consequences of an inhomogeneous chiral phase for
the equation of state of matter in neutron stars have been investigated in Refs. [8, 9]. On the other
hand, to the best of our knowledge, there has been no investigation on the possibility of formation
of an inhomogeneous chiral phase in the matter produced in the late stage of a heavy-ion collision.
Motivated by this fact, in the present communication we present results of a study of the dynamics
of the formation of inhomogeneous chirally broken phases, with the aim of getting insight on the
possibility of formation of such phases at the final stages of a heavy-ion collision. We are particularly
interested in the time scales involved in the formation process. Our study is conducted within the
framework of the phenomenological time-dependent Ginzburg-Landau equation.

2 Dynamics of order parameters

It is well known that static phase transitions in many-particle systems with short-range interactions
depend on the spatial dimensionality and symmetry properties of the order parameters characterizing
the different phase transitions in the system. On the other hand, the dynamics of phase transitions
depends, in addition, on whether there are conservation laws associated with the order parameters and
also on the couplings among the order parameters and conserved densities. Like in the case of static
phase transitions, dynamical phase transitions can be grouped into universality classes, or models, in
the nomenclature of Hohemberg and Halpering [10]. We are interested in the dynamics of the chiral
order parameters. When neglecting the coupling of the order parameters to conserved densities, like
the baryon density and the energy-momentum tensor, one is lead to assume that the dynamics belongs
to the model A dynamical universality class [10-14].

Denoting by ¢(x, ¢) the order parameter field, a protype equation of motion for ¢(x, ¢) is the phe-
nomenological time-dependent Ginzburg-Landau (GL) equation

dp(x,1) _ . 6H[4]
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where H[¢] is the Ginzburg-Landau-Wilson (GLW) Hamiltonian, which is typically of the form

1
H(¢] = f dx H(¢), H(p) = EK(V¢)2 +Uo(9), @



with « a positive constant and Uy(¢) contains nonderivative polinomial terms, the lowest order being
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where ry and ug are constants that can depend on the temperature, the latter being necessarily positive
at this level of truncation. For ry < 0, Uy(¢) has a double-well shape. In addition, {(x, f) is the noise
field describing thermal fluctuations and I' is an Onsager (dissipation) coefficient. For simplicity, we
consider a simple white-noise correlation function for the noise field:

€x,0); =0, x4, 1))y = 2TT 6(t = 1') 6(x = X), “

where (- - - ); means average over noise realizations and T is the external temperature.
From the Fokker-Planck equation associated with the GL equation of Eq. (1), it is not difficult to
show that the equilibrium probability distribution of field configurations ¢(x) is the Boltzmann factor

Pegl¢p] = e H1OIT, S

The equilibrium partition function is then given by the functional integral

Z[¢] = f D e HOVT (6)

The meaning of this is that a correlation function, e.g. a two-point correlation function {(¢(x;)¢(x")),
defined as

1
(@) = f D px)p(x') e 1T (7)

can also be calculated via the long-time solutions of the GL equation as

N,
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where ¢,(X, f) is a solution of the GL equation of Eq. (1), with the index r indicating r-th noise realiza-
tion, and N, is the total number of realizations (N, is supposed to be large). Despite straightforward,
the numerical solution of Eq. (1) requires some care with respect to the lattice spacing and time steps
used in the discretization of the derivatives. One way to minimize the dependence on the lattice spac-
ing is to use a renormalization procedure, as explained e.g. in Refs. [15-17]. When considering the
dynamics of a conserved density, e.g. the baryon number, one would be lead to consider a model B
dynamics [18, 19].

Equations of the Ginzburg-Landau type can be derived from a microscopic model via the closed-
time-path (CTP) effective action formalism [20]. In general, the equations obtained with the CTP
formalism contain nonlocal (non-Markovian) dissipation kernels and colored noise fields, as well as
the possibility of field-dependent noise terms (multiplicative noise) [15, 21-23]. In a phenomenolog-
ical approach, which we employ in the present study, one takes the equilibrium Hamiltonian H[¢]
and so the description is valid for situations not too far from equilibrium. In addition, the dissipation
coefficient I that enters Eq. (1) must be obtained from independent estimates.

To illustrate a typical solution ¢,(x, f) of Eq. (1) for a given noise realization, let us consider a
double-well potential Uy(¢p). We take as an initial configuration ¢(x, 0) that assumes a random value
at each point x = (x, y, x), with amplitude ¢((x, 0)/¢o = 0.1 and zero average, where ¢¢ = (|ro|/ug)'/?
is the positive minimum of Uy(¢). Figure 1 shows density plots of a typical field configuration



Figure 1. Typical spatial profiles of the order parameter — see text for explanations. Figure taken from Ref. [24].

¢ (x,y,z = 0,1)/¢y at different time instants /1y, where 1, is a typical time scale. At ¢ = 0, left panel of
the figure, one has the initial random configuration with zero noise average. As ¢/t increases, central
e right panels, one starts seeing very clearly the inhomogeneous nature of the solutions. For #/fy very
large, the system will eventually evolve to a nearly homogeneous equilibrium configuration for which
@,.(X, 1)/ do is positive or negative, with |¢,(X, f)| = ¢o. The equilibrium value is not precisely the “bare
vacuum’ ¢ because of the thermal fluctuations.

3 Chiral order parameters — statics

We consider NJL-type models with vanishing quark masses. The Lagrangian density defining the
models is written generically as

_ . G
L=y iy, y(x) + EJH(X)Ja(X), )]
where i stands for the Ny = 2 fermion doublet, and J,(x) are currents of the form

Ju(x) = fd4z 6@ 0 (x+Z) raw(x-3). (10)

where I, = (1, iysT), and G(z) is a form factor that characterizes the effective interaction. For the tra-
ditional, local NJL model, teh form factor is given by G(z) = d(z). One should be aware of the fact that
NIJL-type models are meant to model the chiral transition of QCD, but they miss two prominent fea-
tures of QCD, asymptotic freedom and quark-gluon confinement, that certainly are very important at
high densities. Models developed in the past that incorporate those features, as those of Refs. [25-27],
have achieved relative success in describing vacuum hadron properties, and provide a good alternative
for studying the confined phase. Still another alternative, although technically more elaborate, is the
use of Dyson-Schwinger equations of QCD at finite density [28], like the recent study in Ref. [29].
To obtain an equilibrium GLW Hamiltonian as a functional of the order parameters to be used in
Eq. (1), we perform a standard bosonization of the theory by integrating out the quark fields in favor
of scalar and pseudoscalar fields. We employ the mean field approximation, in that the bosonic fields
are replaced by their vacuum expectation values ¢(x) = (o(x),m(x)). Following Refs. [4, 30], the
mean field thermodynamic potential is expanded around the symmetric ground state in powers of the



order parameters and their spatial gradients and define it as being the GLW Hamiltonian density

Ha@®) = 36+ + L9 + 2@ + L.
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where the a,, n = 2,4,4b,6¢,6d depend upon the temperature 7' and baryon chemical potential y;
their expressions are given in Ref. [30] and their explicit behavior as a function of 7" and u will be
presented elsewhere [31].

For the local NJL model, one has [30] a4, = a4, and ag,/5 = ag./3 = 2a64 = ag, Which is the
case investigated in Ref. [4]. In this case, Eq (11) has a critical point in the 7 X u phase diagram
where @, = a4 = 0,a¢ > 0. By exploring the phase diagram in the vicinity of this critical point, the
author of Ref. [4] found that, for one dimensional modulations of the order parameter ¢(z) (neglecting
the coupling to the & order parameter), that the ay/ag x sgn(as)(|az|/as)'/? plane is divided into
three regions, as shown in Fig. 2: one in which chiral symmetry is broken and ¢ # O is spatially
homogeneous, a second contiguous region in which the symmetry is still broken but ¢ = ¢(z) is
an inhomogeneous configuration, and a third, contiguous to the second, where chiral symmetry is
restored, ¢ = 0. The profile of the inhomogeneous configurations can be written in terms of a Jacobi
Elliptic function [4, 32-34]

¢(z) = Vvgsn(qz; v), (12)
where the parameters v and g depend upon the @,. On the line @y = —+36/5a,a¢, Where the

transition between the homogeneous and inhomogeneous phases takes place, v = 1 [4, 35], and
@¢(z) = gtanh (gz). On this line, the homogeneous and inhomogeneous solutions coexist.
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Figure 2. Phase diagram in parameter space of the local NJL model adapted from Ref. [4]. Grey region: the
order parameter is spatially homogeneous. Crosshatched region: the order parameter assumes the configuration
given in Eq. (12). White region: chiral symmetry is restored, ¢ = 0.

Next, we consider the phase diagram from a nonlocal NJL model for a particular set of parame-
ters [36]. The model is completely determined by the form factor G(z) and the coupling constant G.
The form factor is taken to be a Gaussian; its Fourier transform is g(p) = exp(— p2 /A?), where the
parameter A is related to the range of the interaction. Those parameters are fixed by fitting the pion de-
cay constant and the quark condensate in the chiral limit: f; = 86 MeV and {(gg) = —(270 MeV)>. The
numerical values of G and A are G = 14.668 GeV~2 and A = 1.046 GeV. Fig. 3 shows the correspond-
ing phase diagram for a spatial modulation in the form of a dual chiral density wave, i.e. a plane wave



for the scalar and pseudoscalar fields — see Ref. [36] for details. Although a stable inhomogeneous
phase exists for very high densities only, there exists, however, a local stable minimum of the GLW
Hamiltonian of Eq. (11) with an inhomogeneous condensate, but it is located within the extremely
narrow band enclosed by the dotted and dash-dotted lines. This latter situation is very interesting, in
that for a 7' and u near the tricritical and Lifshitz points — e.g. the point (¢, T) = (190 MeV, 50 MeV)
identified in the figure — there appear inhomogeneous order parameters as solutions of the corre-
sponding Ginzburg-Landau equation that are long-lived, with a life time much larger than I', as we
discuss in the next section. It is important to note that the shape of the phase diagram and the location
of the inhomogeneous minimum depend heavily on the value of the chiral condensate.
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Figure 3. T x p phase diagram for a particular parametrization of the nonlocal NJL model [36]. Solid (dashed)
lines indicate first (second) order phase transitions. The dotted line corresponds to the homogeneous chiral
restoration transition. The dash-dotted line is a boundary of a region in which there exists a local inhomoge-
neous minimum of the thermodynamical potential. HCB (HCR) and IH stand for homogeneous chirally bro-
ken (restored) and inhomogeneous phases. TCP and LP stand for tricritical and Lifshitz points. The values
(u=190MeV, T = 50 MeV) are those used in the evaluation of the @, in Eq. (11) for the dynamical simulation.
Figure adapted from Ref. [36].

4 Chiral order parameters — dynamics

We have two order parameters, o and 1. The corresponding time-dependent GL equations are coupled
due to the the nonlinear terms in Hyji [0, ]; they are given by
do(x,1) 0HyyLlo, 7] on‘(x,1) 0HnyLlo, 7]

£y -I's oD + Lo (X, 1), Ey T om0 + L(x, 1), (13)

where {, and {, are white-noise fields. We start presenting solutions for the local NJL model and a
static medium — expansion of the medium is considered in the following section. We take 7 = 0 and,
to avoid proliferation of different choices of parameters, we study the line ay = — V36/5 asas; as
discussed above, on this line the solution given in Eq. (12) becomes a hyperbolic tangent. Dimension-
ful quantities are rescaled with with the appropriate powers of I. We choose @, = ag' = I'"2, then
ag = —V36/5. The initial profile ¢(z, 0) is chosen to be a random configuration generated with Gaus-
sian noise, with the same parity of the inhomogeneous equilibrium solution — recall that on the line



ay = —V36/5 arag, the homogeneous and inhomogeneous solutions coexist. As the inhomogeneous
solutions occur at relatively low temperatures, the noise field { can be neglected.
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Figure 4. Results for the simulation on the first critical line, @y = —V36/5 aa¢. The initial condition is

generated with a Gaussian noise and it has the parity of the equilibrium solution.

In Fig. 4 we plot the solutions ¢(z, ¢) at different times ¢. Clearly, the long-time solution resembles
the equilibrium hyperbolic tangent solution, achieved after a time r ~ 10I". Since we do not have
a microscopic derivation of Eq. (1), the value of I must be taken from elsewhere. A good estimate
for T, calculated from the decay o0 — am, is I' = 1/3fm [22, 37] at T = 0, which is the relevant
temperature in the present case. For this value of I', equilibrium is achieved after a time interval of
t = 30 fm. In the next section we compare this time scale with the expansion rate. It is important to
mention that in principle there is a minimum size of the system for the decay o — 7z to happen; if
the size is too small, the decay cannot happen, there is no dissipation and fluctuation and, therefore, I
would be zero.

We consider now the coupled system of GL equations, Eq. (13), for the non local NJL model. We
evaluate the a, coeflicients of the GLW Hamiltonian in Eq. (11) for (u = 190 MeV,T = 50 MeV).
This (u, T) point, identified on the phase diagram of Fig. (3), is located within the chirally broken
homogeneous equilibrium phase, but it lies very close to the tricritical and Lifshitz points. We take as
initial profiles o(z,0) and m(z, 0) dual chiral density waves superimposed by Gaussian noise. Fig. 5
shows the solutions for o (z, ) and 7(z, f) = 7°(z, £). Clearly, the long-time solutions are the expected
homogeneous solutions 7 = 0 and o # 0, the latter indicating that chiral symmetry is dynamically
broken. The interesting feature here is that although the equilibrium order parameters are homo-
geneous, homogeneity is reached only after a very long time, ¢+ > 10*T". The investigation of the
dependence of the lifetime of the inhomogeneous solutions on the size of the system is reserved for a
future publication.
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Figure 5. Time dependence of spatial profiles of the pseudoscalar (left panel) and scalar (right panel) order
parameters. The initial profiles are shown by the light dotted lines.

5 Chiral order parameters — dynamics with expansion of the medium

Here we address the evolution of the order parameter in an expanding medium using Bjorken flow
[38]. A more realistic simulation of the expansion would demand a full hydrodynamical simula-
tion. The appropriate coordinates to describe longitudinal expansion are the so called Milne coordi-
nates [39], the longitudinal proper time 7 = (>—z%)"/? and space-time rapidity = 1/2 log (t+2)/(t—2),
where ¢ and z denote the time and longitudinal coordinates in the laboratory frame. We must trans-
form the derivatives in the GL equation accordingly. The initial conditions are set at a time-like surface
7 = 7¢. The value of 7 sets how late the GL evolution starts after the beginning of the expansion.
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Figure 6. GL evolution of the order parameter for an expanding medium in the local NJL model. The simulation
is performed on the first critical line, oy = — V36/5 6. Left panel: spatial average ¢, defined in Eq. (14), as
a function of elapsed proper time At = 7 — 7, for two values of 7. Right panel: the order parameter ¢ as a
function of the space-time rapidity # for a delayed dynamics, 7o = 10* I, and elapsed proper time At = 12 T.

We consider the local NJL model only. Initially, we consider the homogeneous equilibrium phase
and calculate the time evolution of the spatial average of the order parameter

¢= lfdzaﬁ(z,f), (14
LJ.

where L is the spatial extension of system. Again we simulate on the first critical line, a4 =
—/36/5 asas. The result for ¢ as a function of AT = 7 — 7 is shown in the left panel of Fig. 6



for 7o = 10 T" and 7y = T, as well as for the nonexpanding case. As expected, the sooner the GL
dynamics starts with respect to the start of the expansion, the more delayed is the approach to the
equilibrium configuration compared the to static case. In the right panel of the figure, we present
the result for a delayed dynamics, i.e. for a case with 7y = 10* I". The equilibrium configuration is
obtained for an elapsed time At = 12T

6 Conclusions and Perspectives

We have presented results of a study of the dynamics of the formation of inhomogeneous chirally bro-
ken phases. With the aim of getting insight on the possibility of formation of such phases at the final
stages of a heavy-ion collision, we have investigated the time scales involved in the formation process.
Our study was based on the framework of the phenomenological time-dependent Ginzburg-Landau
equation. The Ginzburg-Landau dynamics depends on two fundamental quantities: the energy func-
tional that gives the equilibrium phase diagram and the Onsager coefficient I', a time scale related
to fluctuation and dissipation processes. We employed NJL-type models to obtain the energy func-
tional; we considered a local NJL model with point-like interactions [4] and a nonlocal NJL model
with finite-range interactions [30]. The results are qualitatively similar for both models, but there are
interesting differences. In particular, we have shown that even in the case that the equilibrium phase
is a homogeneous chirally broken phase, long-lived inhomogeneous phases can be formed when the
model energy functional predicts metastable phases, like in the case of the nonlocal NJL model. For
I' = 1/3 fm, that is the value found in Ref. [37] from an estimate of the decay oo — 2 at zero tem-
perature, we found that, for appropriate initial configurations, well-defined inhomogeneous domains
are formed for a time interval of the order of Ar = 10 fm, in both models. We have also considered
expansion of the medium, a crucial feature of heavy-ion collisions that must be taken into account for
a realistic description of the dynamics. We modeled the expansion by one-dimensional Bjorken flow
and found, as expected, that the expansion delays the formation of inhomogeneous phases.

Our work must be improved on several aspects. First of all, one needs to consider dynamics in
three spatial dimensions. One needs also to investigate the role of confinement and asymptotic free-
dom in the phase diagram. For that, one needs models that incorporate such features and go beyond
NJL-type models. In addition, possible observable signals linked to the decay of the inhomogeneous
condensates must be found [40]. Finally, one needs to go beyond the phenomenological Ginzburg-
Landau approach and derive dynamical equations from microscopic models using, for example, the
closed-time-path effective action formalism [20].
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