Measurements of event properties and multi-differential jet cross sections and impact of CMS measurements on Proton Structure and QCD parameters

Antipreet Kaur
Panjab University, Chandigarh (India)

On behalf of the CMS Collaboration

XLVII International Symposium on Multiparticle Dynamics (ISMD 2017)
September 11-15, 2017, Tlaxcala, Mexico
Introduction

Particle jets:
- produced abundantly in the collisions of protons at the Large Hadron Collider (LHC)
- provide an excellent opportunity for testing the predictions of perturbative Quantum Chromodynamics (pQCD) at high energies
- important backgrounds for many new physics models

Inclusive jet cross section measurement:
- gives important information about the strong coupling constant α_S
 \[\sigma_{i-jet} = \sigma(pp \rightarrow i \text{ jets} + X) \propto \alpha_S \]
- provides a deep insight to understand the proton structure by deriving constraints on the parton distribution functions (PDFs)

Jet properties such as jet shapes, mass, charge etc.: key ingredients of Standard Model (SM) physics measurements and for beyond SM physics searches

![proton - (anti)proton cross sections](http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html)
QCD multijet production
Inclusive jet production

Double-differential cross-section in p_T and y:

$$\frac{d^2\sigma}{dp_T dy} = \frac{1}{\epsilon \times L_{\text{int,eff}}} \frac{N_{\text{jets}}}{\Delta p_T (2\Delta|y|)}$$

Measurement at 8 TeV:

- anti-k_t $R = 0.7$
- $21 < p_T < 74$ GeV, upto $|y| = 4.7$ ($\mathcal{L} = 5.6$ pb$^{-1}$)
- $74 < p_T < 2500$ GeV, upto $|y| = 3.0$ ($\mathcal{L} = 19.7$ fb$^{-1}$)

Comparison to NLO parton-level calculations, including electroweak (EWK) and non-perturbative (NP) corrections

Constraints on PDFs together with the fit of α_S [Slide no. 21, 22]

Ratios between different energies 2.76/8 and 7/8: partial reduction of uncertainties
Measurement at 13 TeV:

- anti-k_t R = 0.4 and R = 0.7
- $p_T < 2$ TeV; $|y| < 3$ ($\mathcal{L} = 71$ pb$^{-1}$), $3.2 < |y| < 4.7$ ($\mathcal{L} = 44$ pb$^{-1}$)
- P8+CUETM1 (LO) agrees in shape in $|y| < 1.5$
- Hpp+CUETS1 (LO) agrees in shape in all rapidity bins
- PH+P8 (NLO) shows good agreement

Double-differential cross-section in p_T and y:

$$\frac{d^2\sigma}{dp_T dy} = \frac{1}{\epsilon \times L_{\text{int,eff}}} \frac{N_{\text{jets}}}{\Delta p_T \Delta y}$$
Triple-differential dijets

\[
\frac{d^3\sigma}{dp_{T,\text{avg}} dy^* dy_b} = \frac{1}{c \mathcal{L}_{\text{int.eff}} \Delta p_{T,\text{avg}} \Delta y^* \Delta y_b} N
\]

Measurement at 8 TeV:
- anti-\(k_t\) \(R = 0.7\) (\(\mathcal{L} = 19.7\) fb\(^{-1}\))

Cross section as a function of the:
- average transverse momentum, \(p_{T,\text{avg}} = \frac{1}{2}(p_{T,1} + p_{T,2})\)
- half the rapidity separation, \(y^* = \frac{1}{2}|y_1 - y_2|\)
- boost of the two leading jets, \(y_b = \frac{1}{2}|y_1 + y_2|\)

Data are well described in most of the phase spaces but some differences at high \(p_{T,\text{avg}}\) and \(y_b\)

Best suited to constrain PDFs and extract \(\alpha_S\) [Slide no. 21, 22]
Inclusive multijets

Differential cross-section in $H_T, 2 / 2$:

$$\frac{d\sigma}{d(H_T, 2 / 2)} = \frac{1}{\epsilon \mathcal{L}_{\text{int, eff}} N_{\text{event}}} \Delta(H_T, 2 / 2)$$

Measurement at 8 TeV:

- anti-k_t $R = 0.7$ ($\mathcal{L} = 19.7$ fb$^{-1}$)
- 2-jet and 3-jet event cross sections as a function of $H_T, 2 / 2 = \frac{1}{2}(p_T, 1 + p_T, 2)$
- Data are well described by theory predictions within uncertainty.
- EWK corrections explains the increasing excess of the 2-jet data w.r.t. theory (~ 1 TeV)
- 3-jet to 2-jet cross section ratio R_{32}: many uncertainties cancel and sensitive to α_S [Slide no. 22]
Azimuthal correlations

Normalized differential cross-section in ϕ:

$$\frac{1}{\sigma_{1,2}} \frac{d\sigma_{1,2}}{d\Delta\phi_{1,2}} \text{ (2-jet)}, \quad \frac{1}{\sigma_{2j}} \frac{d\sigma_{2j}}{d\Delta\phi_{2j}} \text{ (3-jet and 4-jet)}$$

Measurement at 13 TeV:

- anti-k_t $R = 0.4$ ($\mathcal{L} = 35.9$ fb$^{-1}$)

- Normalized cross sections as a function of the:
 - azimuthal angular separation between the two highest leading p_T jets (2-jet, 3-jet and 4-jet)
 - minimum azimuthal angular separation between any two of the three or four leading p_T jets (3-jet and 4-jet)

- Spectrum gets flatter and become more sensitive to parton shower on moving from 2-jet to 3-jet to 4-jet

- Best agreement is given by Herwig7

- POWHEG-2J gives better results when matched with Pythia8 than Herwig++

- POWHEG-3J+Pythia8 is generally lower than POWHEG-2J+Pythia8

- An interesting tool to test the theoretical predictions of multijet production processes

CMS-PAS-SMP-16-014
Pythia8 (LO) exhibits small deviations from the \(\Delta \phi_{1,2} \) and fails to describe \(\Delta \phi_{2j}^{\min} \)

Herwig++ exhibits the largest deviations from the \(\Delta \phi_{1,2} \) but provides a reasonable description of the \(\Delta \phi_{2j}^{\min} \)

MADGRAPH+Pythia8 provides a good overall description of the measurements except for \(\Delta \phi_{2j}^{\min} \) in 4-jet case
Jet charge

Measurement at 8 TeV:

- anti-k_t $R = 0.5$ ($L = 19.7$ fb$^{-1}$)
- p_T-weighted sum of the electric charges of the particles in a jet:

 $$Q^\kappa = \frac{1}{(p_T^{\text{jet}})^\kappa} \sum_i Q_i (p_T^i)^\kappa$$

 $$Q_L^\kappa = \sum_i Q_i \left(p_{\parallel}^i \right)^\kappa / \sum_i \left(p_{\parallel}^i \right)^\kappa$$

 $$Q_T^\kappa = \sum_i Q_i \left(p_{\perp}^i \right)^\kappa / \sum_i \left(p_{\perp}^i \right)^\kappa$$

- Differentiate statistically jets from quarks of different electric charge, or between gluon or quark jets
- Three values of $\kappa = 0.3$, 0.6 and 1.0, provide different sensitivities to the softer and harder particles in the jet
- Broader jet charge distribution on disabling the simulation of FSR in Pythia8

arXiv:1706.05868
(Submitted to JHEP)
Dijet mass

Measurement at 13 TeV:
- anti-k_t $R = 0.8$ ($\mathcal{L} = 2.3$ fb$^{-1}$)
- Double-differential jet cross section as a function of the jet mass and jet p_T:
 - **Soft drop (SD)** grooming algorithm removes low energetic constituents
 - For ungroomed jets: MC generators predictions agree with data within uncertainties for intermediate regions ($0.1 < m/p_T < 0.3$)
 - For groomed jets: the jet mass peak is suppressed and the precision in the low and intermediate regions improves
 - Sensitive to QCD parton showering; used in searches for new physics ("boosted" objects)
Electroweak production
Measurement at 8 TeV:

- anti-k_t $R = 0.5$ ($\mathcal{L} = 19.6$ fb$^{-1}$)
- $p_T(\ell) > 20$ GeV, $|y(\ell)| < 2.4$, $71 < M(\ell\ell) < 111$ GeV; $\ell = e, \mu$
- $p_T(j) > 30$ GeV, $|y(j)| < 2.4$
- Differential cross sections as functions of the jet H_T, p_T and $|y|$ for the leading jet
- Double differential cross sections as a function of $|y|$ and p_T, for the leading jet
- A large number of final-state partons should be included in the matrix element calculations in order to correctly describe the kinematics of the leading jets

Measurement at 13 TeV:

- anti-k_t $R = 0.4$ ($\mathcal{L} = 2.5$ fb$^{-1}$)
- $p_T(\ell) > 20$ GeV, $|y(\ell)| < 2.4$, $71 < M(\ell\ell) < 111$ GeV; $\ell = \mu$
- $p_T(j) > 30$ GeV, $|y(j)| < 2.4$
- Differential cross sections as a function of jet multiplicity, p_T and y for different jet multiplicities (upto 3 jets)
- Good agreement with NLO and NNLO calculations
Measurement at 8 TeV:
- anti-k_t R = 0.5 ($\mathcal{L} = 19.6 \text{ fb}^{-1}$)
- Differential cross sections as functions of the jet multiplicity, H_T, and p_T for different jet multiplicities
- Very good agreement with NLO 0, 1, 2 jets FxFx and NNLO 1 jet
- Important background for other measurements

Measurement at 13 TeV:
- anti-k_t R = 0.4 ($\mathcal{L} = 2.5 \text{ fb}^{-1}$)
- Differential cross sections as a function of jet multiplicity, p_T, y and H_T for different jet multiplicities (upto at least 3 jets)
- Good agreement with NLO and NNLO calculations
Z → ℓ + b jet at 8 TeV:
- anti-k_t $R = 0.5$ ($\mathcal{L} = 19.8$ fb$^{-1}$)
- b tagging: combined secondary vertex (CSV) algorithm
- Differential cross sections as a function of p_T and η of the highest-p_T b jet, Z boson p_T, H_T, and $\Delta \phi_{Zb}$
- Ratios of the differential cross sections for $Z(1b)$ and $Z+$jets
- $Z(>1b)$ low-p_T region not well described, Z(bb) generally agree with predictions

W → ℓ + b jet at 8 TeV:
- anti-k_t $R = 0.5$ ($\mathcal{L} = 19.8$ fb$^{-1}$)
- Exactly one ℓ with $p_T(\ell) > 30$ GeV, $|\eta_\ell| < 2.1$,
 Exactly two b jets with $p_T(j) > 25$ GeV, $|\eta_j| < 2.4$
- Cross-section in agreement with Standard Model predictions
 \[\sigma \rightarrow W(\ell \nu + b \bar{b}) = 0.64 \pm 0.03(\text{stat}) \pm 0.10(\text{syst}) \pm 0.06(\text{theo}) \pm 0.02(\text{lumi}) \]

arXiv:1611.06507 (Accepted in EPJC)

EPJC 77 (2017) 92

Anupriya Kaur (PU)

ISMD 2017 11 September, 2017 15 / 27
Measurement at 8 TeV:

- anti-k_t R = 0.5 ($\mathcal{L} = 19.7$ fb$^{-1}$)

- **Cross section** $\sigma(pp \rightarrow Z + c + X)$,

- **Cross section ratio** $\frac{\sigma(pp \rightarrow Z + c + X)}{\sigma(pp \rightarrow Z + b + X)}$,

 inclusively and differentially as a function p_T of Z boson and jet with heavy flavour content

- Measurements are in agreement with the LO predictions from MADGRAPH and NLO predictions from MG5_aMC

- Predictions from the MCFM program are lower than the measured $\sigma(Z + c)$, both inclusive and differentially

- Better description in terms of the $Z + c/Z + b$ cross sections ratio

$$\sigma(pp \rightarrow Z + c + X) = 8.6 \pm 0.5{\text{(stat)}} \pm 0.7{\text{(syst)}} \text{ pb}$$

$$\frac{\sigma(pp \rightarrow Z + c + X)}{\sigma(pp \rightarrow Z + b + X)} = 2.0 \pm 0.2{\text{(stat)}} \pm 0.2{\text{(syst)}} \text{ pb}$$
Top Physics
Differential $t\bar{t}$ production cross section, $\ell +$ jets

Measurement at 8 TeV:
- anti-k_t R = 0.5 ($\mathcal{L} = 19.7$ fb$^{-1}$)
- Dilepton $e^\pm\mu^\mp$ final state
- Normalized double-differential cross section as a function of six different pairs of kinematic variables:
 \[p_T(t), y(t), [\Delta y(t), M(t\bar{t})], [\rho_T(t\bar{t}), M(t\bar{t})], [\Delta \phi(t\bar{t}), M(t\bar{t})] \]
- Significant improvement of g at high x as a function of $M(t\bar{t}) - y(t\bar{t})$ [Slide no. 21]

Measurement at 13 TeV:
- anti-k_t R = 0.4 ($\mathcal{L} = 2.3$ fb$^{-1}$)
- $\ell+$jets decay channels with a single μ or e in the final state
- Differential and Double-differential cross sections as a function of jet multiplicity and of kinematic variables of the t and $t\bar{t}$ system
- Measured $p_T(t)$ softer than expected except for Herwig++ MCs, as predicted by the NNLO and the NLO+NNLL' QCD calculation

EPJC 77 (2017) 459

PRD 95 (2017) 092001
t-channel single top quark production

Measurement at 13 TeV:

- anti-k_t $R = 0.4$ ($\mathcal{L} = 2.2$ fb$^{-1}$)
- Exactly one muon and at least two jets with one b-tagged jet
- Separation between signal and background processes by a MVA technique
- Fit to the distribution of the discriminating variable yields a total cross section:
 \[\sigma(t\text{-ch.}, t+\bar{t}) = 238 \pm 13\text{(stat)} \pm 29\text{(syst)} \text{ pb} \]
- A ratio of top quark and top antiquark production:
 \[R_{t\text{-ch.}} = 1.81 \pm 0.18\text{(stat)} \pm 0.15\text{(syst)} \]
- Absolute value of the CKM matrix element V_{tb}:
 \[1.05 \pm 0.07\text{(exp)} \pm 0.02\text{(theo)} \]
- All results are in agreement with the Standard Model predictions.

arXiv:1610.00678
(Accepted in PLB)
Top mass

Measurement at 8 TeV:
- Cambridge-Aachen R = 1.2 ($\mathcal{L} = 19.7$ fb$^{-1}$)
- Vetoed > 2 jets with $p_T > 150$ GeV
- Highly boosted $t\bar{t}$ events:
 - Semileptonic decay: $t \rightarrow bW$ with $W \rightarrow \ell\nu_\ell$ where $\ell = e$ or μ
 - Fully hadronic decay: $t \rightarrow bW$ with $W \rightarrow q\bar{q}'$
- Differential cross section as a function of jet mass (m_{jet}):
 - Slight overestimation of cross section in simulation.
- Normalized differential cross section as a function of jet mass (m_{jet}):
 - Consistent with other cross section measurements in boosted events.
- Peak position in the m_{jet} distribution is sensitive to the top quark mass m_t
 $$m_t = 170.8 \pm 9.0 \text{ GeV}$$

EPJC 77 (2017) 467
Parton Distribution Functions determination

Inclusive jet:
- 2D cross sections vs of jet p_T and rapidity
- Probes hadronic parton-parton interaction over a wide range of x and Q
- Constraints on PDFs: QCD analysis of data together with HERA DIS measurements, at NLO using HERAFitter
- Significant impact on the gluon distribution in a new kinematic regime

Triple differential dijets:
- 3D cross sections vs of jet average p_T, rapidity separation and boost
- Use dijet cross section in the QCD analysis in addition to HERA data
- Change in the gluon shape similar as observed in the case of inclusive jet data
- Significant reduction of the uncertainty in $g(x)$ at high x

Double-differential cross sections for top quark pair production:
- 2d-differential $t\bar{t}$ cross sections
- QCD analysis of data along with HERA inclusive DIS data and CMS W asymmetry, using XFitter 1.2.2
- Best improvement comes from $M(t\bar{t})-y(t\bar{t})$
- Recommend to use both data sets for further improvement of $g(x)$ at high x
The strong coupling constant α_S

Inclusive jet [JHEP 03 (2017) 156]:

- Least square minimization on $p_T(y)$ spectrum using NLO parton level predictions
- Using the CT10 NLO PDF set
 \[\alpha_S(M_Z) = 0.1164^{+0.0014}_{-0.0015} \text{ (exp)} +^{0.0025}_{-0.0029} \text{ (PDF)} \pm 0.0001 \text{ (NP)} +^{0.0053}_{-0.0028} \text{ (scale)} \]

Multijets [CMS-PAS-SMP-16-008]:

- 3-jet to 2-jet cross section ratio, $\mathcal{R}_{32} \propto \alpha_S$
- Insensitive to many theoretical and experimental systematics
- Using the MSTW2008 PDF set
 \[\alpha_S(M_Z) = 0.1150 \pm 0.0010 \text{ (exp)} \pm 0.0013 \text{ (PDF)} \pm 0.0015 \text{ (NP)} +^{0.0050}_{-0.0000} \text{ (scale)} \]

Triple differential dijets [arXiv:1705.02628]:

- Precise α_S extraction together with PDF fit
 \[\alpha_S(M_Z) = 0.1199 \pm 0.0015 \text{ (exp)} \pm 0.0002 \text{ (mod)} +^{0.0002}_{-0.0004} \text{ (par)} +^{0.0031}_{-0.0019} \text{ (scale)} \]

$\alpha_S^{PDG} = 0.1181 \pm 0.0011$
Jet production in pp collisions is one of the main phenomenological predictions of pQCD. Measurements of characteristics of events with jets, from jet-charge over investigations of shapes to jet mass distributions are presented.

- Compared to theoretical predictions including those matched to parton shower and hadronization.

Multi-differential jet cross-sections over a wide range in transverse momenta from inclusive jets to multi-jet final states are measured.

- Impact on the determination of the strong coupling constant α_S as well as on parton density functions (PDFs)

Electroweak boson production: inclusive or associated with charm or beauty quarks give insight into the flavour separation of the proton sea.

Measurements of cross sections of jet and top-quark pair production are in particular sensitive to the gluon distribution in the proton and α_S.

THANKS!!
Back-Up Slides
Triple-differential dijets

 gg jets (x_g < x_q)
 gq jets (x_g > x_q)
 q_iq_i jets
 q_iq_j jets
 q_iq_i jets
 q_iq_j jets

 Subprocess fraction
 0 \gamma_b < 1
 0 \gamma^* < 1

 1000 200 300 500
 p_T, avg [GeV]
 0.0
 0.2
 0.4
 0.6
 0.8
 1.0

 Subprocess fraction
 0 \gamma_b < 1
 1 \gamma^* < 2

 8 TeV

 gg jets
 gq jets

 Subprocess fraction
 1 \gamma_b < 2
 0 \gamma^* < 1

 2 \gamma^* < 3

 1000 200 300 500
 p_T, avg [GeV]
 0.0
 0.2
 0.4
 0.6
 0.8
 1.0

 Subprocess fraction
 1 \gamma_b < 2
 0 \gamma^* < 1

 2 \gamma^* < 3

 arXiv:1705.02628
Jet charge

CMS

\(p_T > 400 \text{ GeV} \)

\(|\eta| < 1.5 \)

19.7 fb\(^{-1}\) (8 TeV)

\(\frac{1}{N} \frac{dN}{dQ_L} \) [1/e]

\(\frac{1}{N} \frac{dN}{dQ_L} \) [1/e]

\(Q_L < 0.6 \) [e]

\(Q_L < 0.6 \) [e]

Data

MC

0.5

1

1.5

0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

MC

Data

0.5

1

1.5

0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

MC

Data

19.7 fb\(^{-1}\) (8 TeV)

\(p_T > 400 \text{ GeV} \)

\(|\eta| < 1.5 \)

\(\frac{1}{N} \frac{dN}{dQ_L} \) [1/e]

\(\frac{1}{N} \frac{dN}{dQ_L} \) [1/e]

\(Q_L < 0.6 \) [e]

\(Q_L < 0.6 \) [e]

Data

MC

0.5

1

1.5

0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

MC

Data

0.5

1

1.5

0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

MC

Data

-19.7 fb

CMS

Anterpreet Kaur (PU)

ISMD 2017

11 September, 2017

26 / 27
Parton Distribution Functions determination

HERAPDF method (Hessian)

$Q^2 = 10^4 \text{GeV}^2$

CMS HERA I+II DIS + CMS dijets
HERA I+II DIS + CMS inc. jets

$10^4 \, 10^3 \, 10^2 \, 10^1$

x

0.4
0.2
0.0
0.2
0.4

Rel. uncert.

$\delta xg(x, \mu^2_{\text{ref}}) / xg(x, \mu^2_{\text{ref}})$

CMS

$\mu^2 = 30000 \text{ GeV}^2$ NLO

HERA + CMS W^\pm 8 TeV
$+ y(tt) 8 \text{ TeV}$
$+ [y(tt), M(tt)] 8 \text{ TeV}$

EPJC 77 (2017) 459

arXiv:1705.02628