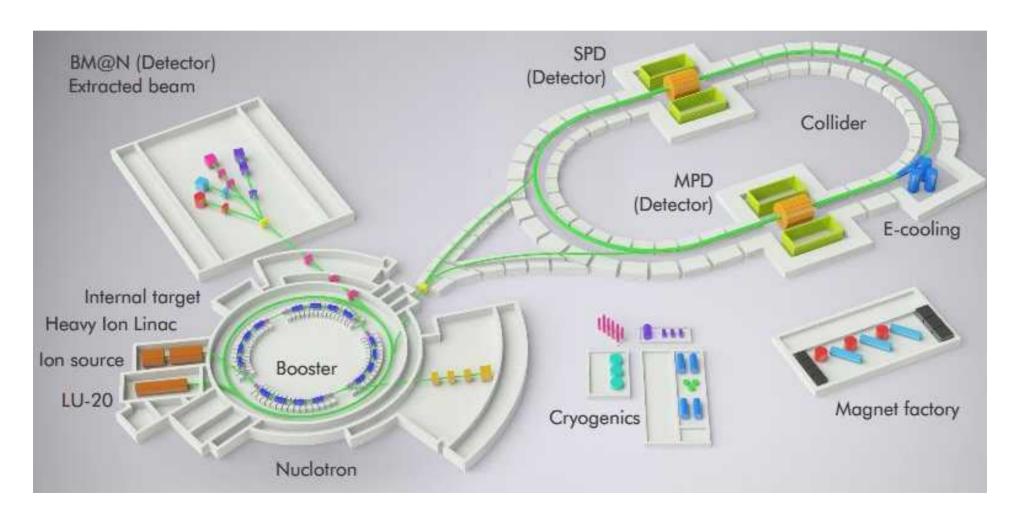


ROGACHEVSKY Oleg for MPD collaboration

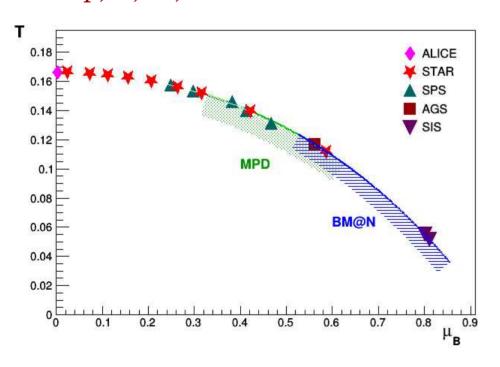
ISMD 2017 September, 11 2017 Tlaxcala City

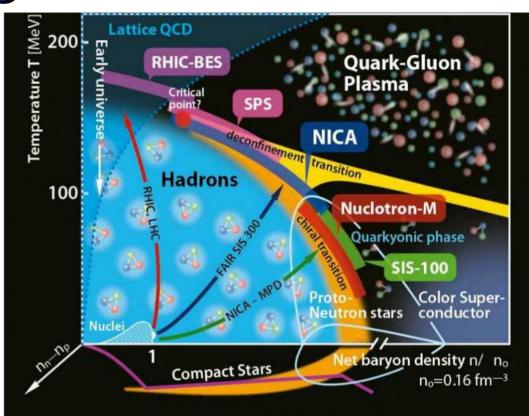

NICA complex

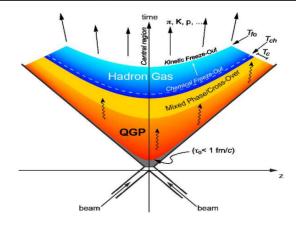
Beams – p,d(h)..¹⁹⁷Au⁷⁹⁺
Collision energy \sqrt{s} = **4-11** GeV/u (Au), **12-27** (p)
Beam energy (fixed target) - **1-6** GeV/u
Luminosity: **10**²⁷ cm⁻²s⁻¹(Au), **10**³² (p)

Experiments:

2 Interaction points – MPD and SPD

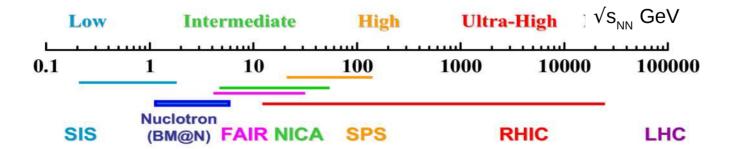

Fixed target experiment **BM@N**

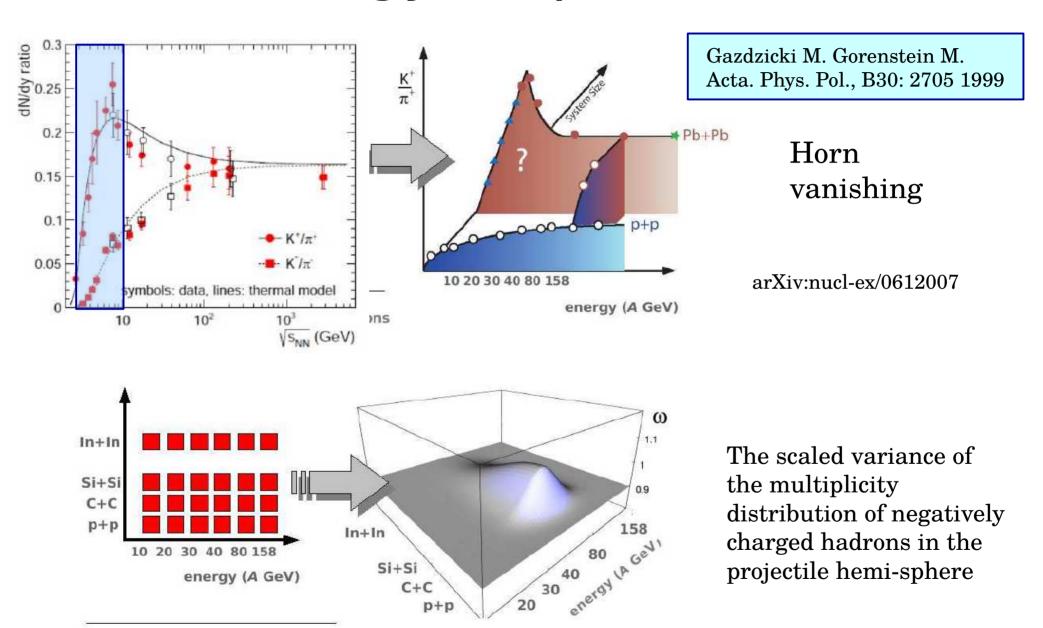



QCD Phase diagram

NICA energy scan:

MPD $4 < \sqrt{s} < 11 \text{ GeV/u}$ BM@N $2.3 < \sqrt{s} < 3.4 \text{ GeV/u}$ p, C, ..., Au

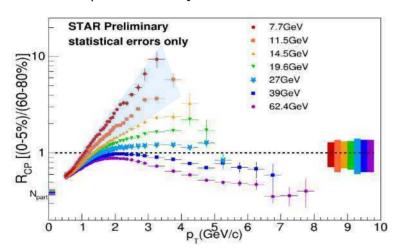



Current & future HI experiments

Facility	SPS	RHIC BES II	Nuclotron- M	NICA	SIS/100 (500 ?)	LHC
Laboratory	CERN Geneva	BNL Brookhaven	JINR Dubna	JINR Dubna	FAIR GSI Darmstadt	CERN Geneva
Experiment	NA61 SHINE	STAR PHENIX	BM@N	MPD	HADES CBM	ALICE ATLAS CMS
Start of data taking	2011	2020	2015	2021	2020/25	2009
$\sqrt{s}_{_{ m NN}}$	4.9 – 17.3	7.7 – 200	< 3.5	4 - 11	2.3 – (4.5)	up to 5500
Physics	CP & OD	CP & OD	HDM	OD & HDM	OD & CP	PDM

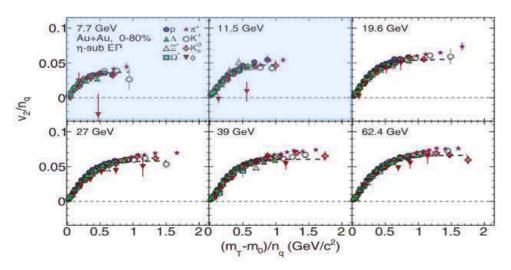
CP — critical point
OD — onset of
deconfinement,
mixed phase,
1st order phase
transition
HDM — hadrons in
dense matter
PDM — properties of
deconfined
matter

NA49 energy & species scan

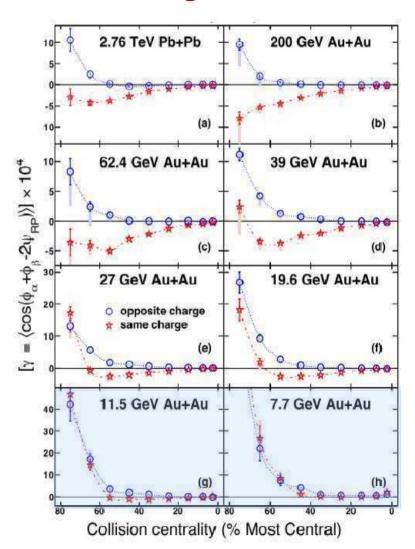


2.106 registered collisions

STAR Beam Energy Scan results

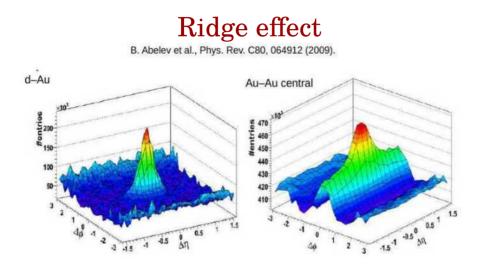

 $High P_{T} suppression$

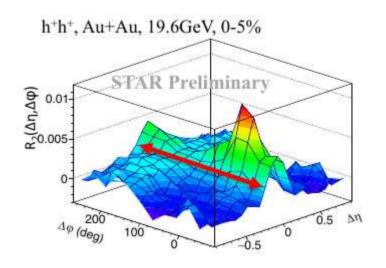
Stephen Horvat Quark Matter 2015

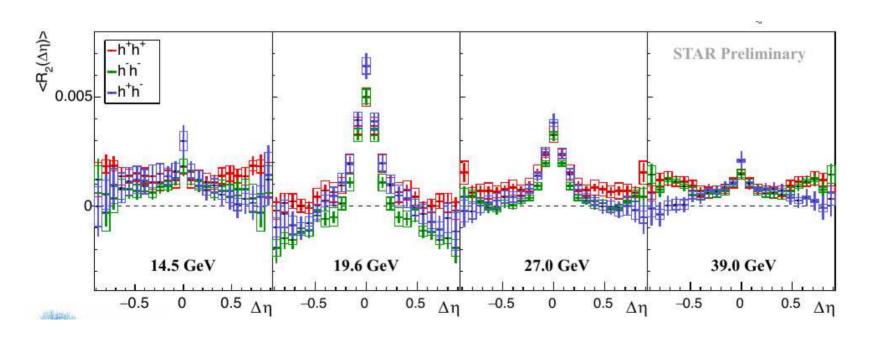


Number of constituent quarks scaling

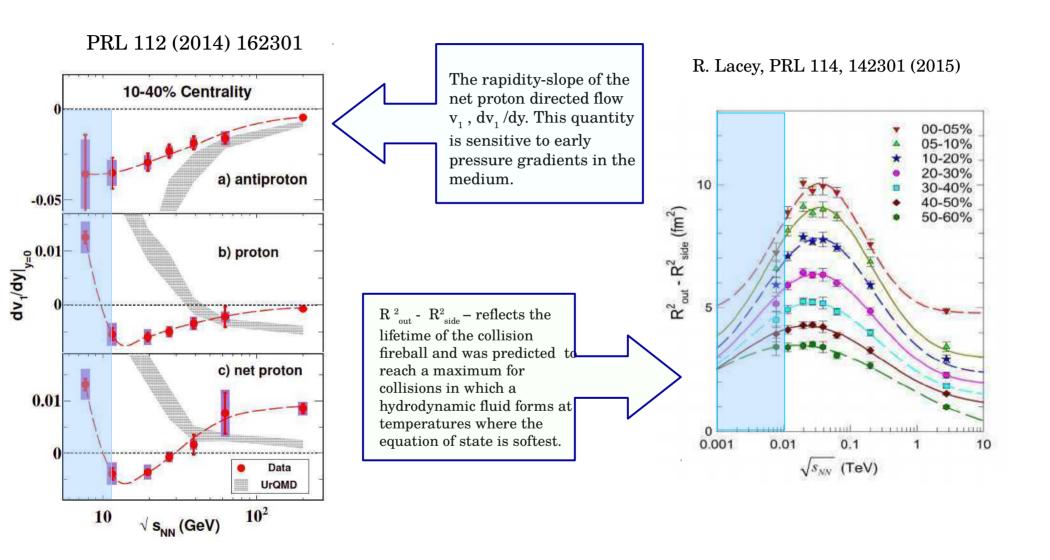
Phys. Rev. C88, (2013), 014902

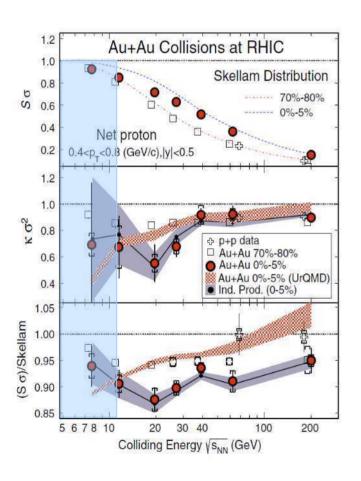



Chiral Magnetic Effect



STAR BES I results


S. Jowzaee, Quark Matter 2017



STAR BES I results

STAR BES I results

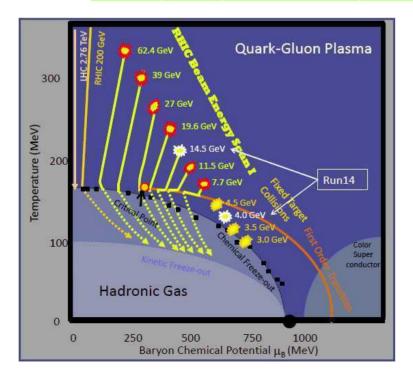
STAR, PRL 112, 032302 (2014)

The kurtosis of the event-by-event distribution of the net proton (i.e. proton minus antiproton) number per unit of rapidity, normalized such that Poisson fluctuations give a value of 1.

In central collisions, published results in a limited kinematic range show a drop below the Poisson baseline around $\sqrt{s_{_{N N}}}$ =27 and 19.6 GeV.

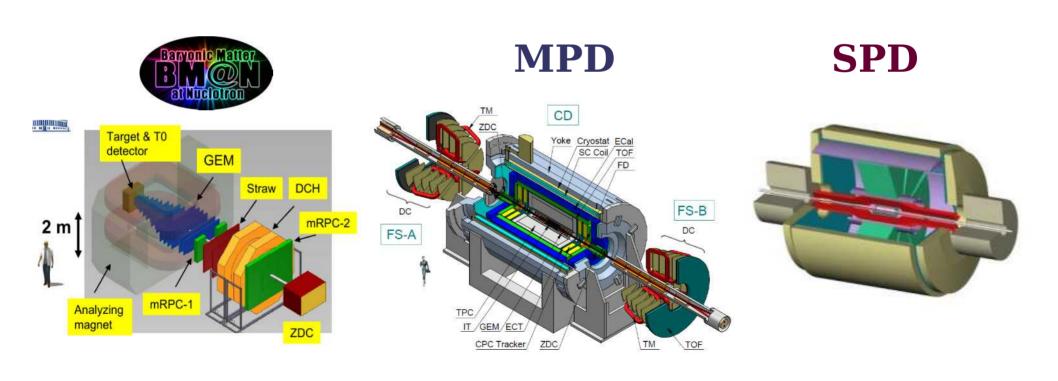
New preliminary data over a larger $p_{_T}$ range, although at present still with substantial error bars, hint that the normalized kurtosis may, in fact, rise above 1 at lower $\sqrt{s}_{_{\rm N}}$, as expected from critical fluctuations..

The grey band shows the much reduced uncertainties anticipated from BES-II in 2018-2019, for the 0-5% most central collisions.


STAR Beam Energy Scan program

BES I

√s _{nn} (GeV)	μ _B (MeV)	MinBias Events (10 ⁶)	Time (weeks)	Year
7.7	420	4.3	4	2010
11.5	315	11.7	2	2010
14.5	260	24.0	3	2014
19.6	205	35.8	1.5	2011
27.0	155	70.4	1	2011
39.0	115	130.4	2	2010
62.4	70	67.3	1.5	2010


BES II

√s _{NN} (GeV)	μ _B (MeV)	Needed Events (10 ⁶)
7.7	420	100
9.1	370	160
11.5	315	230
14.5	260	300
19.6	205	400

Year	System and Energy	Physics/Observables	Upgrade
2017	p+p @ 500 GeVAu+Au @ 62.4 GeV	Spin sign change diffractive Jets	FMS post-shower, EPD (1/8 th), eTOF prototype
2018	• Zr+Zr, Ru+Ru @ 200 GeV • Au+Au @ 27 GeV	• CME, di-leptons • CVE	Full EPD? eTOF prototype
2019	Au+Au @ 14.5-20 GeV + fixed target	QCD critical pointPhase transitionCME, CVE,	Full iTPC, eTOF, and EPD
2020	Au+Au @ 7-11 GeV + fixed target	QCD critical pointPhase transitionCME, CVE,	
2020+	• Au+Au @ 200 GeV • p+A/p+p @ 200 GeV	Unbiased jets, open beauty PID FF, Drell-Yan, longitudinal correlations	• HFT+ • FCS, FTS

NICA experiments & & Physics feasibility study

NICA White Paper

The European Physical Journal

volume 52 · number 8 · august · 2016

Hadrons and Nuclei

Topical Issue on Exploring Strongly Interacting Matter at High Densities - NICA White Paper edited by David Blaschke, Jörg Aichelin, Elena Bratkovskaya, Volker Friese, Marek Gazdzicki, Jørgen Randrup, Oleg Rogachevsky, Oleg Teryaev, Viacheslav Toneev

FEASIBILITY STUDY OF HEAVY ION PHYSICS PROGRAM AT NICA

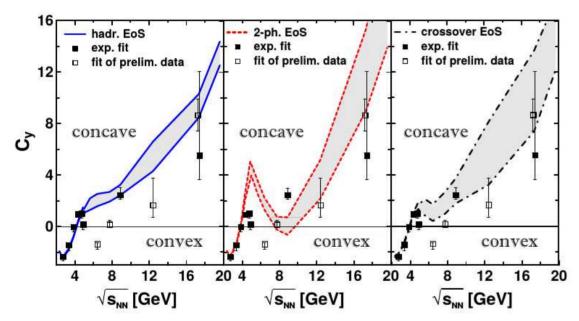
P. N. Batvuk 1,* V. D. Kekelidze 1, V. I. Kolesnikov 1, O. V. Rogachevsky 1, A. S. Sorin 1,2, V. V. Voronyuk 1 on behalf of the BM@N and MPD collaborations

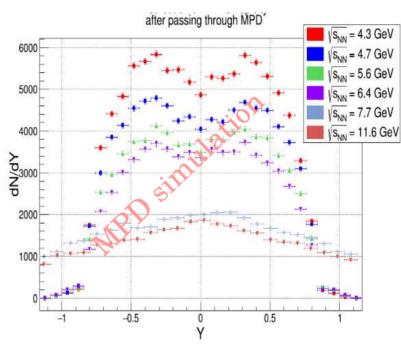
Joint Institute for Nuclear Research, Dubna ² National Research Nuclear University "Moscow Engineering Physics Institute" (MEPhl), Moscow

There is strong experimental and theoretical evidence that in collisions of heavy ions at relativistic energies the nuclear matter undergoes a phase transition to the deconfined state - Quark-Gluon Plasma. The caused energy region of such a transition was not found at high energy at SPS and RHIC, and search for this energy is shifted to lower energies, which will be covered by the future NICA (Dubna), FAIR (Darmstadt) facilities and BES II at RHIC. Fixed target and collider experiments at the NICA facility will work in the energy range from a few AGeV up to $\sqrt{s_{NN}} = 11$ GeV and will study the most interesting area on the nuclear matter phase diagram,

The most remarkable results were observed in the study of collective phenomena occurring in the early stage of nuclear collisions. Investigation of the collective flow will provide information on Equation of State (EoS) for nuclear matter. Study of the event-byevent fluctuations and correlations can give us signals of critical behavior of the system. Femtoscopy analysis provides the space-time history of the collisions. Also, it was found that baryon stopping power revealing itself as a "wiggle" in the excitation function of curvature of the (net) proton rapidity spectrum relates to the order of the phase transition.

The available observations of an enhancement of dilepton rates at low invariant masses may serve as a signal of the chiral symmetry restoration in hot and dense matter. Due to this fact, measurements of the dilepton spectra are considered to be an important part of the NICA physics program. The study of strange particles and hypernuclei production gives additional information on the EoS and "strange" axis of the OCD phase diagram,

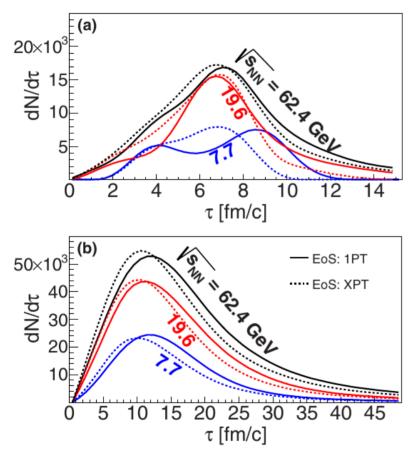

In this paper a feasibility of the considered investigations is shown by the detailed Monte Carlo simulations applied to the planned experiments (BM@N, MPD) at NICA.


INTRODUCTION	1005
PHYSICS STUDIES FOR THE MPD	1011
PHYSICS STUDIES AT THE NUCLOTORON ENERGIES	1041
THE NICA WHITE PAPER PROPOSALS	1044
SUMMARY	1046
REFERENCES	1046

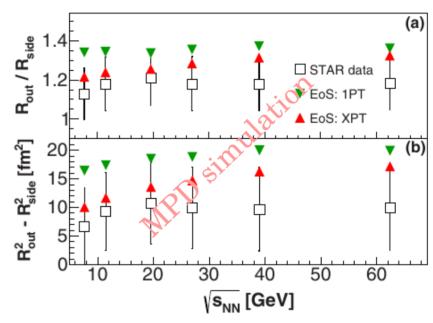
Baryon stopping power

3FD

$$C_y = \left(y_{\text{beam}}^3 \frac{d^3 N}{dy^3}\right)_{y=0} / \left(y_{\text{beam}} \frac{dN}{dy}\right)_{y=0} = (y_{\text{beam}}/w_s)^2 \left(\sinh^2 y_s - w_s \cosh y_s\right)$$

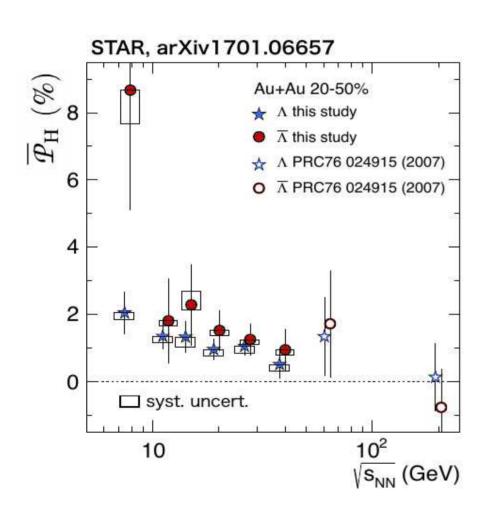


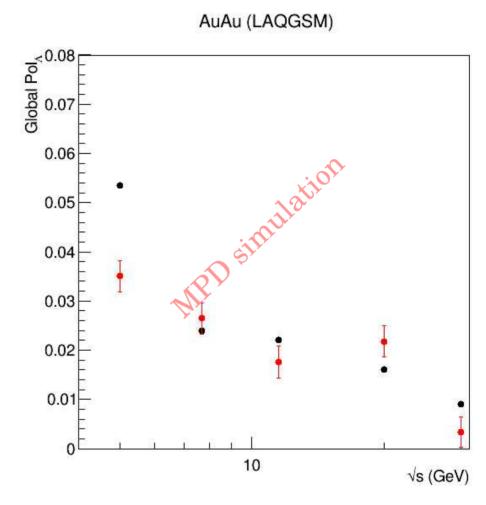
Yu.B. Ivanov, PL B721 (2013) 123 arXiv:1211.2579


Femtoscopy for NICA

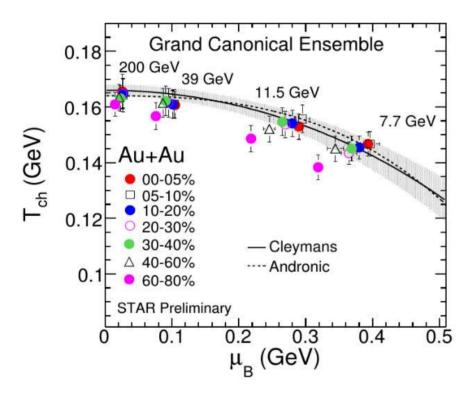
PHYSICAL REVIEW C 96, 024911 (2017)

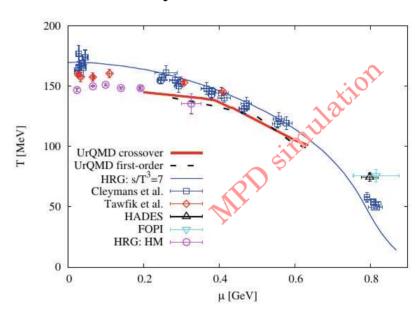
vHLLE + UrQMD model



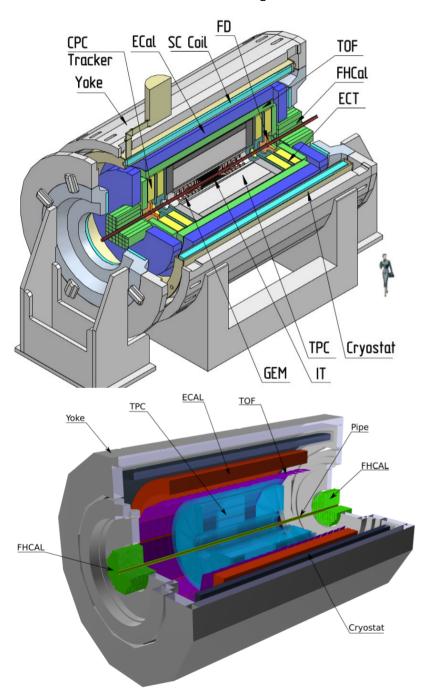

Pion emission times at the particlization surface (a) and the last interactions (b) in the center-of-mass system of colliding gold nuclei at different values of $\sqrt{s_{_{\mathrm{NN}}}}$.

Ratio of the out and side radii (a) and difference of the radii squared (b) as a function of $\sqrt{s_{NN}}$ derived from the STAR data (0.15 < kT < 0.25 GeV/c, 0–5% centrality) and compared with the model calculations using the two EoSs.

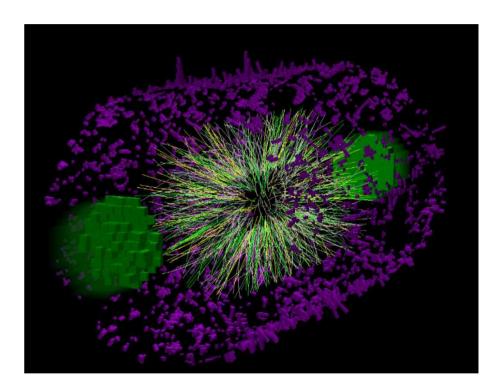

global A polarization for MPD


QCD Phase diagram

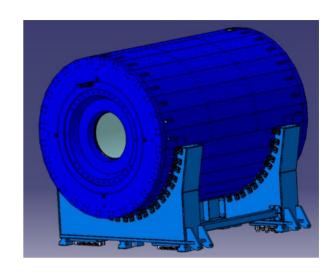
Grazyna Odyniec JoP 455 (2013) 012037 STAR



The dependence of T_{ch} on μ_{B} , fitted with the Grand Canonical approach in THERMUS Model


Eur. Phys. J. A (2016) 52: 324

MPD experiment at NICA



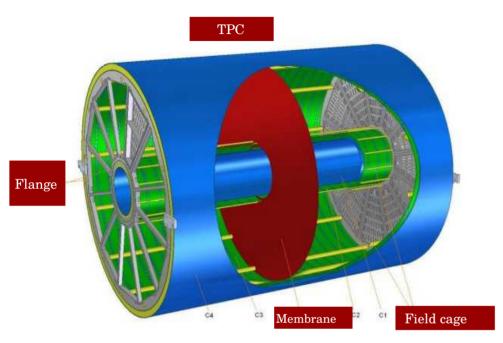
$AuAu \sqrt{s} = 11 \text{ GeV}$

MPD solenoid yoke

VHM, Vitkovice, Czech republic

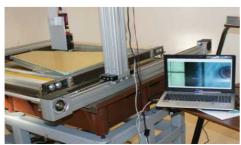
Iron Yoke

Outer diameter 6583 mm


Length 9010 mm

Dist. In between poles 7390 mm

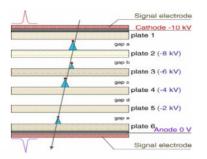
Weight 727 ton

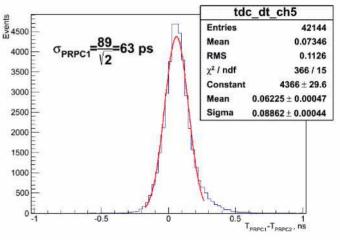

28 plates 16 T each 2 support rings 42.5 T each 2 poles 50 T each

MPD Time Projection Chamber

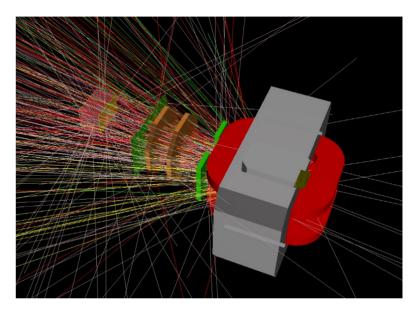


Item	Dimension
Length of the TPC	340cm
Outer radius of vessel	140cm
Inner radius of vessel	27 cm
Outer radius of the	133cm
drift volume	
Inner radius of the drift	34cm
volume	
Length of the drift	170cm (of each half)
volume	
HV electrode	Membrane at the center of the TPC
Electric field strength	~140V/cm;
Magnetic field strength	0.5 Tesla
Drift gas	90% Ar+10% Methane, Atmospheric
	pres. + 2 mbar
Gas amplification	~ 104
factor	
Drift velocity	5.45 cm/μs;
Drift time	< 30μs;
Temperature stability	< 0.5°C
Number of readout	24 (12 per each end-plate)
chambers	
Segmentation in φ	30°
Pad size	5x12mm ² and 5x18mm ²
Number of pads	95232
Pad raw numbers	53
Pad numbers after zero	< 10%
suppression	
Maximal event rate	< 7 kHz (Lum. 10 ²⁷)
Electronics shaping	~180 ns (FWHM)
time	
Signal-to-noise ratio	30:1
Signal dynamical range	10 bits
Sampling rate	10 MHz
Sampling depth	310 time buckets


Time Of Flight detector


mRPC prototype with a strip



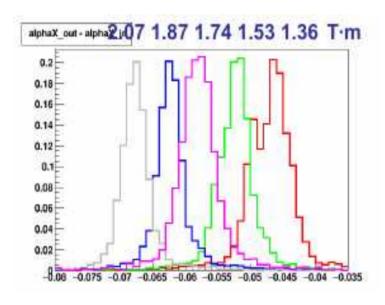

(T1 - T2) for two mRPCs

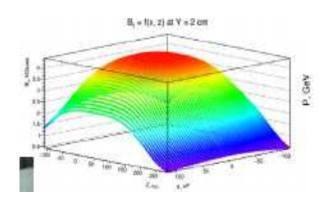
Full scale mRPC prototype with a strip

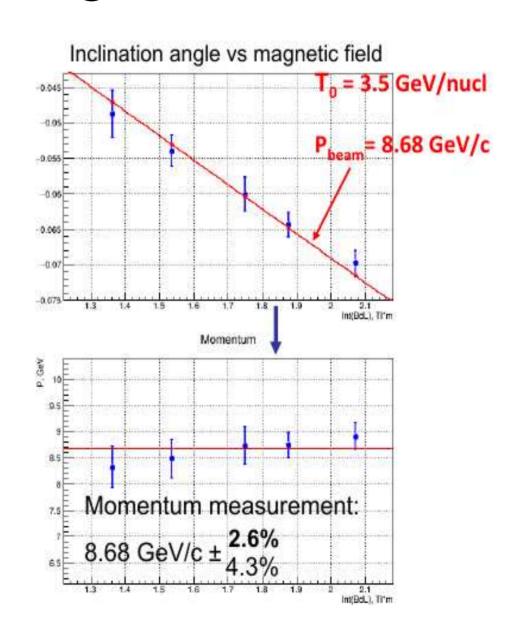
BM@N experiment at NICA

year	2016	2017 spring	2017 autumn	2019	2020 and later
beam	$\mathrm{d}(\uparrow)$	C, Ar	Kr	Au	Au, p
max.intersity, Hz	n1M	1M	1M	1M	10M
trigger rate, Hz	10k	10k	20k	20k	50k
central tracker status	6 GEM half pl.	8 GEM half pl.	10 GEM half pl.	8 GEM full pl.	12 GEMs or 8 GEMs + Si planes
experim. status	techn.	techn. run	physics run	stage 1 physics	stage 2 physics

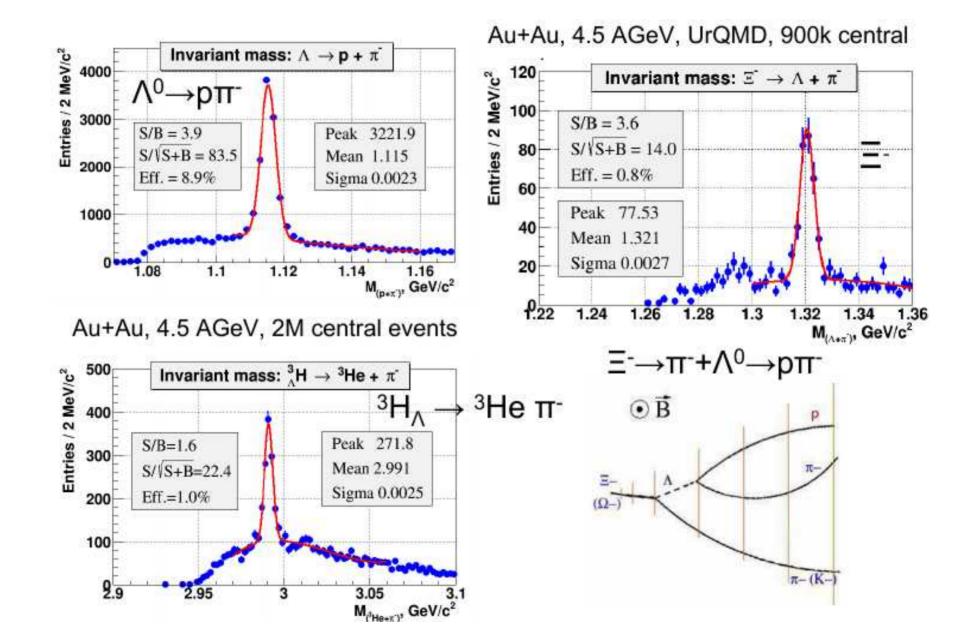
BM@N experiment at NICA

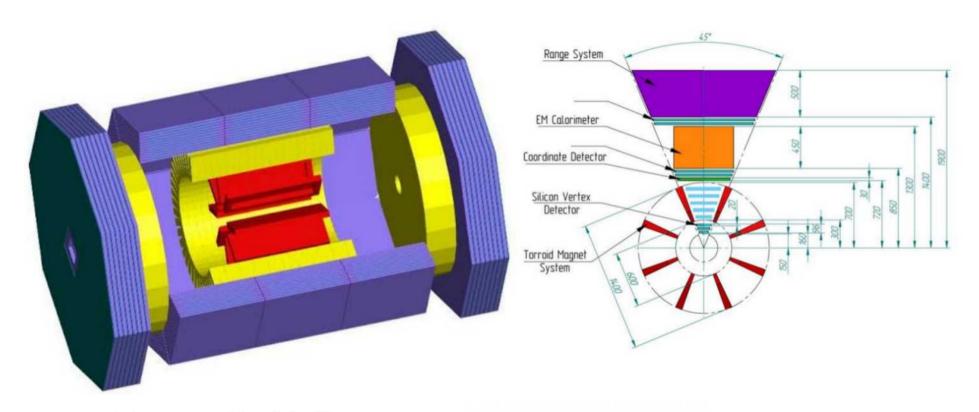





24/33

Deutron tracks and momentum reconstruction with BM@N Drift Chambers


Deutron beam inclination at different values of magnetic field



BM@N physics

Spin Physics Detector

Spin program with polarized beams

The spin program is an important and integral part of the NICA project. Indeed, ever since the "spin crisis" of 1987, the composition of the nucleon spin in terms of the fundamental constituents – quarks and gluons – remains in the focus of attention of many physicists. The highlights of the NICA spin program include measurements of Drell-Yan processes with longitudinally polarized proton and deuteron beams, spin effects in inclusive and exclusive production of baryons, light and heavy mesons and direct photons, and studies of helicity amplitudes and double spin asymmetries in elastic scattering. The SPD detector at NICA would allow to contribute significantly to the current and planned international program in spin physics.

SPD Letter of Intent

hep-ex arXiv:1408.3959

Nec sine te, nec tecum vivere possum. (Ovid)*

Spin Physics Experiments at NICA-SPD with polarized proton and deuteron beams.

Compiled by the Drafting Committee:

I.A. Savin, A.V. Efremov, D.V. Peshekhonov, A.D. Kovalenko, O.V. Teryaev, O.Yu. Shevchenko, A.P. Nagajcev, A.V. Guskov, V.V. Kukhtin, N.D. Topilin.

(Letter of Intent presented at the meeting of the JINR Program Advisory Committee (PAC) for Particle Physics on 25–26 June 2014.)

ABSTRACT

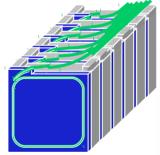
We propose to perform measurements of asymmetries of the DY pair's production in collisions of non-polarized, longitudinally and transversally polarized protons and deuterons which provide an access to all leading twist collinear and TMD PDFs of quarks and anti-quarks in nucleons. The measurements of asymmetries in production of J/Ψ and direct photons will be performed as well simultaneously with DY using dedicated triggers. The set of these measurements will supply complete information for tests of the quark-parton model of nucleons at the QCD twist-two level with minimal systematic errors.

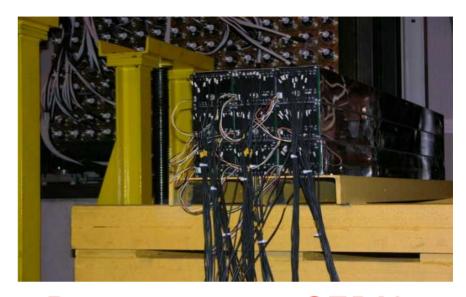
1. Introduction. 4 1.1. Basic PDFs of nucleons. 4
1.2. DIS as a microscope for nucleons. The PDF f_I and g_I .
1.3. New TMD PDFs.
1.4. Other actual problems of high energy physics.
2. Physics motivations.
2.1. Nucleon spin structure studies using the Drell-Yan (DY) mechanism.
2.2. New nucleon PDFs and J/\P production mechanisms.
2.3. Direct photons.
2.4. Spin-dependent high-p _T reactions.
 Spin-dependent effects in elastic pp,pd and dd scattering.
2.6. Spin-dependent reactions in heavy ion collisions.
2.7. Future DY experiments on nucleon structure in the world.
3. Requirements to the NUCLOTRON-NICA complex
4. Polarized beams at NICA
4.1. Scheme of the complex.
4.2. Source of polarized ions (SPI).
4.3. Acceleration of polarized ions at Nuclotron.
4.4. NICA in the polarized proton and deuteron modes.
4.5. Polarimetry at SPI, Nuclotron and NICA.
5. Requirements to the spin physics detector (SPD)35
5.1. Event topologies.
5.2. Possible layout of SPD.
5.3. Trigger system.
5.4. Local polarimeters and luminosity monitors.
5.5. Engineering infrastructure.
5.6. DAQ and data base.
5.7. SPD reconstruction software.
5.8. Monte Carlo simulations.
5.9. Slow control.
5.10. Data accumulation, storing and distribution.
6. Proposed measurements with SPD
6.1. Estimations of DY and J/Ψ production rates.
6.2. Estimations of direct photon production rates.
6.3. Rates in high- p_T reactions.
6.4. Rates in elastic <i>pp</i> and <i>dd</i> scattering.
6.5. Feasibility of the spin-dependent reaction studies in heavy ion collisions. 7. Time lines of experiments.
7. Time lines of experiments. 49 8. References (separately for each Section) 50
o. References (separately for each section).

NICA Site

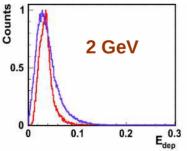
NICA Schedule

		015	2	2016 20		2017	7 2018		2019	2020	2021	2022	2023
Injection complex				П						ter lede			
Lu-20 upgrade													
HI Source													
HI Linac													
Nuclotron	П												
general development			T		Т			Т					
extracted channels	П			П									
Booster													
Collider	П												
startup configuration	П												
design configuration	П												
BM@N	Ħ				1			_					
l stage					117,								
II stage													
MPD													
solenoid													
TPC, TOF, Ecal (barrel)													
Upgrade: end-caps +ITS	Ш												M de
Civil engineering	П												
MPD Hall	П												
SPD Hall	П						in in				1881001		(10) (10)
collider tunnel	Ħ												
HEBT Nudotron-collider													
Cryogenic							700		ud (a)				
for Booster		を描	8			00/45							
for Collider													

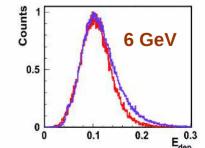



Forward Hadron Calorimeter

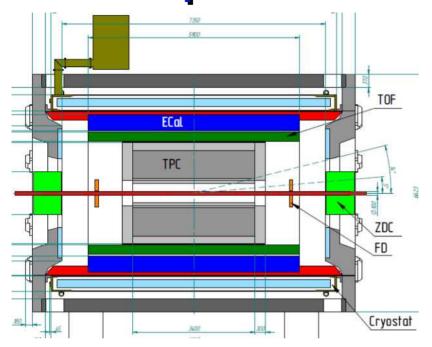
NA61, CBM, MPD

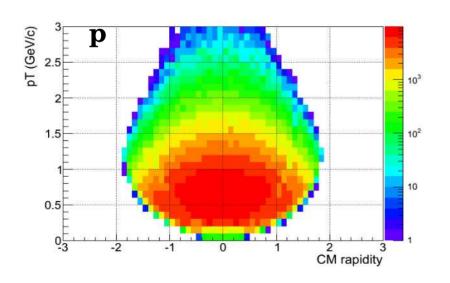

Module assembling at INR

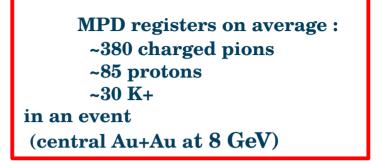


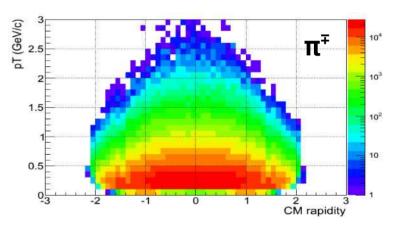


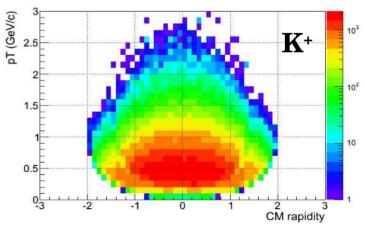
Beam test at CERN

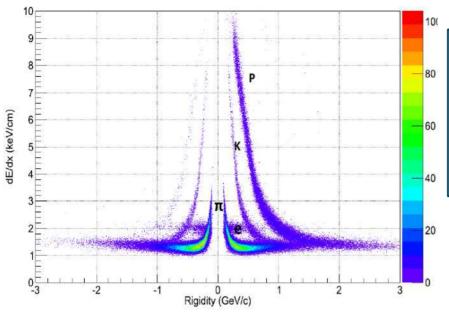





Transverse size 15x15 cm², length~160 cm, weight ~120 kg.
60 lead/scintillator sandwiches.
6 fiber/MAPD

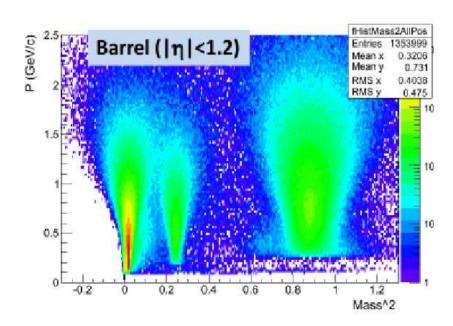

10 MAPDs/module

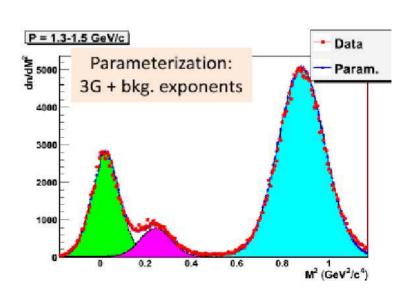

Phase space



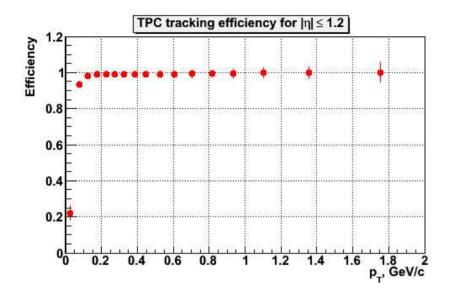
Charged Particle ID

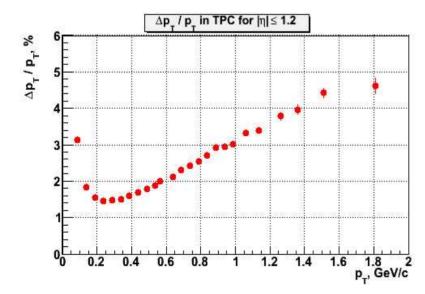
E = 9 GeV, 2000 events, UrQMD

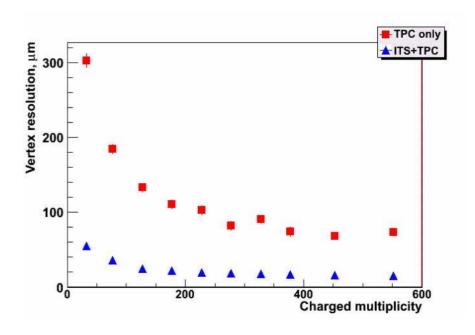



TPC

PID: Ionization loss (dE/dx) Separation: e/h - 1.3..3 GeV/c $\pi/K - 0.1..0.6$ GeV/c K/p - 0.1..1.2 GeV/c


MPD PID (TOF):


- π/K separation up to p=1.7 GeV/c, above 2 GeV/c - extrapolating the fitted 3G parameters
- ☐ Protons up to 3 GeV/c
- dE/dx provide extra PID capability for electrons and low momentum hadrons



Tracking

Low-p cutoff ~ **100 MeV** for a **0.5 T** magnetic field

